

# **VITOCHARGE**

Modulares 1-phasiges Stromspeichersystem auf Li-Ionen-Basis Für Netzparallel- und Netzersatzbetrieb

# Planungsanleitung



# VITOCHARGE Typ S230 4.4B

### Wechselrichter:

■ Leistung kontinuierlich: 3,3 kW

■ Leistung 30 min/5 min/3 s: 4,4 kW/4,6 kW/5,5 kW

■ AC-Spannung/Frequenz: 230 V/50 Hz

# Batteriemodul, Typ 4.8A:

■ Nennkapazität: 3,87 kWh/7,75 kWh/11,62 kWh/15,5 kWh nutzbar

■ Zyklenfestigkeit: 5000 @ 1C ■ Maximaler Entladestrom: 94 A Systemwirkungsgrad: bis 90 %

# Inhaltsverzeichnis

# Inhaltsverzeichnis

| 1. | Produktinformation             | 1.1 | Produktbeschreibung                                                                                          | 4<br>4   |
|----|--------------------------------|-----|--------------------------------------------------------------------------------------------------------------|----------|
|    |                                |     | ■ Das modulare Stromspeichersystem                                                                           | 4        |
| 2. | Vitocharge                     | 2.1 | Produktbeschreibung                                                                                          | 7        |
|    |                                | 2.2 | Systemübersicht  Technische Deten Vitecharge                                                                 | 8        |
|    |                                | 2.2 | Technische Daten Vitocharge                                                                                  | 9        |
|    |                                |     | Netzparallel- und Netzersatzbetrieb                                                                          | 10       |
|    |                                | 2.3 | Technische Daten Batteriemodul, Typ 4.8A                                                                     | 12       |
|    |                                | 2.0 | ■ Technische Daten                                                                                           | 12       |
|    |                                |     | Batterie-Kennlinien                                                                                          | 13       |
|    |                                |     | ■ Transport von Batteriemodulen                                                                              | 13       |
| 3. | Installationszubehör           | 3.1 | Vitocharge                                                                                                   | 14       |
|    |                                |     | ■ Batteriemodul, Typ 4.8A                                                                                    | 14       |
|    |                                |     | ■ Stromsensor ■ Umschalteinrichtung                                                                          | 14<br>14 |
| 4. | Produktinformation             | 11  | Aufstellung, Montage                                                                                         | 15       |
| 4. | Produktimormation              | 4.1 | Aufstelling, Montage     Aufstellbedingungen                                                                 | 15       |
|    |                                |     | Montageort wählen                                                                                            | 15       |
|    |                                |     | ■ Platzbedarf und Mindestabstände                                                                            | 15       |
|    |                                | 42  | Elektrischer Anschluss                                                                                       | 16       |
|    |                                |     | Netzwerkeinbindung                                                                                           | 16       |
|    |                                |     | Bestimmungsgemäße Verwendung                                                                                 | 17       |
|    |                                |     | Nachrüstung weiterer Batteriemodule                                                                          | 17       |
|    |                                |     | Auslegung der Stromspeichergröße für den Netzparallelbetrieb                                                 | 17       |
|    |                                |     | ■ Kombination Stromspeicher (Vitocharge) und Photovoltaik (Vitovolt)                                         | 18       |
|    |                                |     | <ul> <li>Kombination Wärmepumpe (Vitocal), Stromspeicher (Vitocharge) und Photovoltaik (Vitovolt)</li> </ul> | 18       |
|    |                                |     | ■ Kombination Warmwasser-Wärmepumpe (Vitocal 161-A, 1,67 kW), Stromspei-                                     |          |
|    |                                |     | cher (Vitocharge) und Photovoltaik (Vitovolt)                                                                | 21       |
|    |                                |     | gerät (Vitovalor), Stromspeicher (Vitocharge) und Photovoltaik (Vitovolt)                                    | 21       |
|    |                                | 4 7 | ■ Individuelle Simulation der Energieflüsse mit Polysun                                                      | 22       |
|    |                                | 4.7 | Auslegung der Stromspeichergröße für den Netzparallelbetrieb mit Netzersatzbe-                               | 22       |
|    |                                |     | trieb                                                                                                        |          |
|    |                                |     | <ul> <li>Abschätzung des Energiebedarfs bei Netzausfall</li> <li>Weitere Hinweise</li> </ul>                 | 23<br>23 |
|    |                                | 18  | Allgemeine Hinweise zu Blockschaltplänen und Anschlussplänen                                                 | 23       |
|    |                                |     |                                                                                                              |          |
| 5. | Anlagenbeispiele mit Vitovolt  | 5.1 | Netzparallelbetrieb                                                                                          |          |
|    |                                |     | ■ Blockschaltplan                                                                                            |          |
|    |                                |     | ■ Anschlussplan                                                                                              | 25       |
|    |                                | 5.2 | Netzparallelbetrieb mit Netzersatzbetrieb                                                                    |          |
|    |                                |     | ■ Blockschaltplan                                                                                            |          |
|    |                                |     | Anschlussplan                                                                                                | 27       |
| 6. | Anlagenbeispiele mit Vitovalor | 6.1 | Netzparallelbetrieb                                                                                          | 28       |
|    |                                |     | ■ Blockschaltplan                                                                                            | 28       |
|    |                                |     | ■ Anschlussplan                                                                                              | 29       |
|    |                                | 6.2 | Netzparallelbetrieb mit Netzersatzbetrieb                                                                    | 30       |
|    |                                |     | ■ Blockschaltplan                                                                                            | 30       |
|    |                                |     | ■ Anschlussplan                                                                                              | 31       |
| 7. | Anlagenbeispiele mit Vitovalor | 7.1 | Netzparallelbetrieb                                                                                          | 32       |
|    | und Vitovolt                   |     | ■ Blockschaltplan                                                                                            | 32       |
|    |                                |     | ■ Anschlussplan                                                                                              | 33       |
|    |                                | 7.2 | Netzparallelbetrieb mit Netzersatzbetrieb                                                                    | 34       |
|    |                                |     | ■ Blockschaltplan                                                                                            | 34       |
|    |                                |     | ■ Anschlussplan                                                                                              | 35       |
| 8. | Anlagenbeispiele mit Vitobloc  | 8.1 | Netzparallelbetrieb                                                                                          | 36       |
|    |                                |     | ■ Blockschaltplan                                                                                            | 36       |
|    |                                |     | Anschlussplan                                                                                                | 37       |
| 9. | Anlagenbeispiele mit Vitobloc  | 9.1 | Netzparallelbetrieb                                                                                          | 38 8     |
|    | und Vitovolt                   |     | ■ Blockschaltplan                                                                                            | 1        |
|    |                                |     |                                                                                                              |          |

2

# Inhaltsverzeichnis (Fortsetzung)

|     |                                              |      | ■ Anschlussplan                                  | 39 |
|-----|----------------------------------------------|------|--------------------------------------------------|----|
| 10. | Anlagenbeispiele mit Vitocal und<br>Vitovolt | 10.1 | Netzparallelbetrieb  Blockschaltplan             |    |
|     | VIIOVOIL                                     |      | Anschlussplan                                    |    |
|     |                                              | 10.2 | Netzparallelbetrieb mit Netzersatzbetrieb        |    |
|     |                                              |      | ■ Blockschaltplan                                |    |
|     |                                              |      | ■ Anschlusspian                                  | 43 |
| 11. | Anhang                                       | 11.1 | Förderungen, Anträge und Konformitätserklärungen | 43 |
|     | -                                            | 11.2 | Vorschriften/Richtlinien                         | 44 |
| 12  | Stichwortverzeichnis                         |      |                                                  | 45 |

# 1.1 Produktbeschreibung

### Das Vitocharge Stromspeichersystem - ein Systemprodukt der Viessmann Werke

Vitocharge wurde für die Anforderungen an das Viessmann Strom-Wärme-Systemangebot (Vitovolt, Vitocal, Vitovalor) mit einheitlichem Produktdesign zur Anwendung in Wohngebäuden entwickelt.

### Installationsfreundliches Konzept

Vitocharge ist ein installationsfreundliches Kompaktgerät, auch zur Installation durch den Heizungsfachmann und Inbetriebnahme durch den Elektrofachmann:

- Vorverdrahtetes Gerät
- Keine DC-Gefahren
- Batteriemodule mit Plug-and-Play-Funktion

### Produkt- und Systemschulungen

Zur praktischen Qualifizierung werden Schulungen mit folgenden Inhalten angeboten:

- Beratung
- Planung
- Installation
- Service

Die Schulungen erfolgen mit Praxisaufbau und Zertifizierungsmöglichkeit.

Allgemeines Seminar:

■ Basiswissen Stromspeicher Vitocharge

Zertifizierungsseminare:

- Presales Stromspeicher Vitocharge Beraten Planen
- Aftersales Stromspeicher Vitocharge Montage Wartung Service
- Seminare zur Systemzertifizierung sind in Planung.

Weitere dazu passende Photovoltaik- und Mikro-KWK-Seminare sowie Schulungstermine und Buchungsmöglichkeiten siehe **www.viessmann.com** unter "Marktpartner" > "Akademie".

### Garantie und Servicedienstleistungen

Das Stromspeichersystem Vitocharge hat eine gesetzliche Gewährleistung von 2 Jahren. Darüber hinaus hat das Batteriemodul eine Zeitwertersatzgarantie von 10 Jahren. Für das Basisgerät kann die Funktionsgarantie für die Jahre 3 bis 5 erweitert werden. Bedingungen für die Zeitwertersatzgarantie der Batteriemodule und Bedingungen für die Garantieverlängerung der Vitocharge Basisgeräte siehe www.viessmann.com unter "Marktpartner" > "Vitocharge". Viessmann bietet für Vitocharge ein umfangreiches Serviceangebot zur Unterstützung des Installateurs.

Es werden folgende Dienstleistungen angeboten:

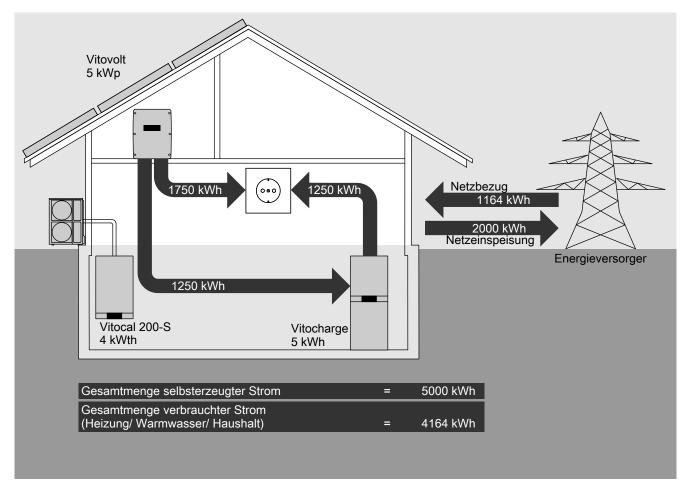
- Anlieferungs- und Einbringservice
- Anlagencheck und Inbetriebnahme
- Entgeltliche Erweiterung der Funktionsgarantie für 5 Jahre für das Basisgerät mit Batterie-Wechselrichter

Dienstleistungsangebot siehe **www.viessmann.com** unter "Marktpartner" > "Preislisten" > "Dienstleistungen".

### Das modulare Stromspeichersystem

### Überblick

In Zeiten der Energiewende entstehen zunehmend dezentrale Energieversorgungssysteme. Sie decken als Wärmeerzeuger den Wärmebedarf des Hauses und als Stromlieferant einen Teil des häuslichen Strombedarfs. Die Ausgestaltung der Energiesysteme ist dabei vielfältig. Folgende Kombinationen sind beim Energiesystem möglich:


- Wärmepumpe, Photovoltaik und Stromspeicher
- Kraft-Wärme-Kopplung, Photovoltaik und Stromspeicher

Die Ergänzung dieser Energiesysteme um das modulare Stromspeichersystem Vitocharge kann auf verschiedene Art und Weise den Nutzen des Energiesystems erhöhen:

- Eigenstromoptimierung in Kombination mit Photovoltaik- und/oder KWK-Anlage zur Senkung der Stromkosten
- Flexible Stromvermarktung für Ertragsmaximierung
- Autarkes System für größere Unabhängigkeit von Stromanbietern
- Netzersatzbetrieb für hohe Versorgungssicherheit bei Stromnetzausfall


Das modulare Stromspeichersystem kann entsprechend den Speicheranforderungen des jeweiligen Energiesystems konfiguriert werden. Das Stromspeichersystem ist als Kompaktgerät mit geringem Installationsaufwand montierbar.

### Effizienzsystem aus Wärmepumpe, Photovoltaikanlage und Stromspeicher



Am Tag Strom erzeugen. Nachts Strom verbrauchen.

Strom aus Sonne und Heizung: Max. Unabhängigkeit durch Photovoltaikanlage, Mikro-KWK und Stromspeicher



Hohe Stromautarkie im Sommer und Winter

### Weitere Informationen

### Richtige Speichergröße durch Plug-and-play

Unterschiedliche Einsatzzwecke und variierende Erzeuger- und Lastprofile erfordern flexible Speichergrößen. Aus diesem Grund bietet das Stromspeichersystem Vitocharge die Aufnahme von bis zu 4 Batteriemodulen. Eine Erweiterung mit zusätzlichen Modulen ist einfach über Einschieben und Starten bis zur Maximalanzahl je Vitocharge möglich. Die max. nutzbare Speicherkapazität variiert entsprechend der eingesetzten Batteriemodule, siehe Kapitel "Technische Daten".

### Regelung: Die wichtigsten Informationen auf einen Blick

In der Grundanzeige der Regelung werden folgende Informationen auf einen Blick angezeigt:

- Betriebszustand des Vitocharge
- Aktueller Ladezustand des Stromspeichers
- Status Netzanschlusspunkt
- Aktuelle Betriebsart: Netzeinspeisung, Netzbezug, Batterieladung
- Aktive Energiemanagement-Funktionen
- Aktuelle Störung oder Meldung liegt an: Über die Abfragefunktion zeigt die Regelung das betroffene Bauteil des Stromspeichersystems an. Das ermöglicht eine schnelle und zielgerichtete Störungsbehebung.

# 1-phasiges Stromspeichersystem

Im Netzparallelbetrieb können Leistungen bis zu einer Schieflastgrenze von 4,6 kW saldierend betrachtet werden. Der Vitocharge führt als 1-phasiges Stromspeichersystem eine bilanzielle Eigenverbrauchsoptimierung durch. Im Netzersatzbetrieb ermöglicht der Vitocharge durch Phasenbrückung die Notstromversorgung aller elektrischen Verbraucher im Haus - unabhängig von der angeschlossenen Phase. Eine Umverteilung der Stromkreise bei Nachrüstung entfällt.

### Sicherheitskonzept

Sicherheit steht ohne jeden Kompromiss an oberster Stelle. Aus diesem Grund ist im Stromspeichersystem Vitocharge in jedem Batteriemodul ein Sicherheitskonzept umgesetzt. Ein Batterie-Managementsystem überwacht Ströme, Spannungen und Temperaturen der Batteriemodule und kann redundant ausgeführte Schalter ansteuern. Selbstgreifende Sicherheitsorgane sorgen zusätzlich für die Abschaltung von Überströmen. Außerdem besitzt das Batteriemodul selbst Sicherheitsfunktionen, die im Fehlerfall das Stromspeichersystem in einen sicheren Zustand überführen und das zuverlässig und zu jeder Zeit.

# Vitocharge

# 2.1 Produktbeschreibung



- Wechselrichter
- Regelung
- (B) (C) (D) (C) Batteriemodul 4
- Batteriemodul 3
- Batteriemodul 2
- (E) (F) Batteriemodul 1

### Vorteile auf einen Blick

### Vitocharge, Typ S230 4.4B mit Batteriemodul, Typ 4.8A

- Ideale Lösung für Einfamilienhäuser zur deutlichen Erhöhung von Eigenstromnutzung und Autarkie in Kombination mit Photovoltaikund Wärmepumpenanlagen
- Eigenstromoptimierung in Kombination mit Photovoltaik- und/oder KWK-Anlage zur Senkung der Stromkosten
- System für größere Unabhängigkeit von Stromanbietern
- Optimale Ergänzung bestehender Energiesysteme
- Netzersatzversorgung für hohe Versorgungssicherheit bei Netzausfall in Kombination mit Photovoltaikanlagen und Brennstoffzellen-Heizsystemen

### Auslieferungszustand

### Vitocharge, Typ S230 4.4B

■ All-in-one-Gerät mit integriertem Wechselrichter und Aufnahme von bis zu 4 Batteriemodulen:

Lieferung mit 1 bis 4 Batteriemodulen

### Bestellbares Zubehör

- 1 Stromsensor:
- Zur Messung der Netzeinspeisung und des Netzbezugs
- Hutschienenaufnahme zur Installation in Zählerschränken
- Nennspannung: 230 V/400 V
- Frequenz: 50 Hz/60 Hz/± 5 %
- Nennstrom: 5 A
- Max. Strom pro Phase: 63 A

# Geprüfte Qualität

CE-Kennzeichnung entsprechend bestehenden EG-Richtlinien

# Systemübersicht

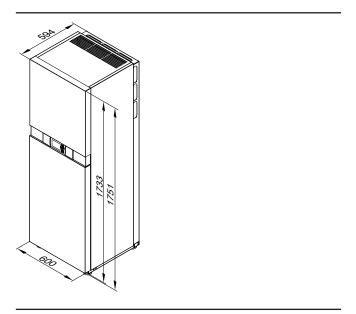
Mögliche Anlagenkombinationen: Vitocharge mit Stromerzeugern und Stromverbrauchern

| Betriebsart                                                                             | Netzparallelbe- | Netzparallelbe-   |
|-----------------------------------------------------------------------------------------|-----------------|-------------------|
|                                                                                         | trieb           | trieb mit Netzer- |
|                                                                                         |                 | satzbetrieb       |
| Erforderliches Zubehör                                                                  |                 |                   |
| Umschalteinrichtung, 1-phasig                                                           | _               | X                 |
| Stromerzeuger und Stromverbraucher                                                      |                 |                   |
| Photovoltaikanlage Vitovolt 200/300                                                     |                 |                   |
| <ul> <li>Vitovolt 1-phasig</li> </ul>                                                   | X               | X                 |
| <ul> <li>Vitovolt 3-phasig</li> </ul>                                                   | X               | _                 |
| Mikro-KWK Vitovalor PT2                                                                 | X               | X                 |
| Mikro-KWK Vitovalor PT2 und Photovoltaikanlagen Vitovolt 200/300                        |                 |                   |
| <ul> <li>Vitovolt 1-phasig</li> </ul>                                                   | X               | X                 |
| <ul> <li>Vitovolt 3-phasig</li> </ul>                                                   | X               | _                 |
| BHKW Vitobloc 200                                                                       | X               | _                 |
| BHKW Vitobloc 200 und Photovoltaikanlage Vitovolt 200/300                               |                 |                   |
| <ul> <li>Vitovolt 1-phasig</li> </ul>                                                   | X               | _                 |
| <ul> <li>Vitovolt 3-phasig</li> </ul>                                                   | X               | _                 |
| Wärmepumpe Vitocal mit 1-phasigem Netzanschluss und Photovoltaikanlage Vitovolt 200/300 |                 |                   |
| <ul> <li>Vitovolt 1-phasig</li> </ul>                                                   | X               | X                 |
| <ul> <li>Vitovolt 3-phasig</li> </ul>                                                   | X               | _                 |
| Wärmepumpe Vitocal mit 3-phasigem Netzanschluss und Photovoltaikanlage Vitovolt 200/300 |                 |                   |
| - Vitovolt 1-phasig                                                                     | X               | _                 |
| <ul> <li>Vitovolt 3-phasig</li> </ul>                                                   | X               | -                 |

### Hinweis

Vitovalor PT2 ist in Verbindung mit Vitocharge nur mit Erdgas betreibbar.

# 2.2 Technische Daten Vitocharge


# Netzparallelbetrieb

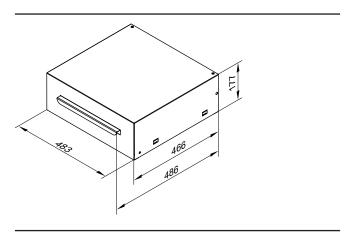
| Betrieb am öffentlichen Stromnetz                    |    |                                               |
|------------------------------------------------------|----|-----------------------------------------------|
| Bemessungsspannung                                   | V~ | 230                                           |
| Spannungsbereich                                     | V  | 172,5 bis 264,5                               |
| Bemessungsnetzfrequenz                               | Hz | 50                                            |
| Frequenzbereich                                      | Hz | 40 bis 70                                     |
| Bemessungsein- und Ausgangsstrom                     | A~ | 14,5                                          |
| Bemessungsein- und Ausgangsleistung                  | kW | 3,3                                           |
| cos φ                                                |    | +1 bis –1                                     |
| Gleichstromeingang                                   |    | •                                             |
| Bemessungseingangsspannung                           | V– | 48                                            |
| Spannungsbereich                                     | V- | 41 bis 63                                     |
| Bemessungsladestrom                                  | A- | 63                                            |
| Bemessungsentladestrom                               | A- | 75                                            |
| Max. Ladestrom                                       | A- | 75                                            |
| Allgemeine Daten                                     |    | ·                                             |
| Überspannungskategorie                               |    | III                                           |
| IK-Code                                              |    | IK06                                          |
| (mechanische Beanspruchung)                          |    |                                               |
| Schutzart                                            |    | IP 20                                         |
| Schutzklasse                                         | ·  | 1                                             |
| Gewicht                                              |    |                                               |
| <ul> <li>Vitocharge ohne Batteriemodule</li> </ul>   | kg | ca. 100                                       |
| Vitocharge mit 4 Batteriemodulen                     | kg | ca. 275                                       |
| Zulässige Umgebungstemperaturen                      |    |                                               |
| - Betrieb                                            |    | +10 bis +30 °C                                |
|                                                      |    | bei relativer Luftfeuchtigkeit von 5 bis 85 % |
| Lagerung und Transport Vitocharge ohne Batteriemodul |    | -20 bis +65 °C                                |
| Lagerung und Transport Batteriemodul                 |    | Siehe "Technische Daten" "Batteriemodul"      |
| Umweltkategorie                                      |    | – Klimatisiert in Innenräumen                 |
|                                                      |    | Keine Kondensation                            |
| Absicherung Gleichstrom intern (NH00)                | Α  | 200                                           |
| Verschmutzungsgrad                                   |    | 2                                             |

# Netzparallel- und Netzersatzbetrieb

| Betrieb am öffentlichen Stromnetz                                        |    |                                               |
|--------------------------------------------------------------------------|----|-----------------------------------------------|
| Bemessungsspannung                                                       | V~ | 230                                           |
| Spannungsbereich                                                         | V  | 172,5 bis 264,5                               |
| Bemessungsnetzfrequenz                                                   | Hz | 50                                            |
| Frequenzbereich                                                          | Hz | 40 bis 70                                     |
| Bemessungsein- und Ausgangsstrom                                         | A~ | 14,5                                          |
| Bemessungsein- und Ausgangsleistung                                      | kW | 3,3                                           |
| COS Φ                                                                    |    | +1 bis –1                                     |
| Netzersatzbetrieb                                                        |    |                                               |
| Bemessungsspannung                                                       | V~ | 230                                           |
| Spannungsbereich                                                         | V  | 202 bis 253                                   |
| Bemessungsfrequenz                                                       | Hz | 50                                            |
| Frequenzbereich (einstellbar)                                            | Hz | 45 bis 65                                     |
| Bemessungsstrom                                                          | A~ | 14,5                                          |
| Maximaler Ausgangsstrom (Spitzenwert für 60 ms)                          | Α  | 60                                            |
| Ausgangsleistungen bei 25 °C                                             |    |                                               |
| - Dauerleistung                                                          | kW | 3,3                                           |
| – Leistung 30 min                                                        | kW | 4,4                                           |
| – Leistung 5 min                                                         | kW | 4,6                                           |
| – Leistung 3 s                                                           | kW | 5,5                                           |
| Klirrfaktor Ausgangsspannung                                             | %  | < 5                                           |
| Max. anschließbare Leistung des Photovoltaik-Wechselrichters             | kW | 4,6                                           |
| Gleichstromeingang                                                       |    |                                               |
| Bemessungseingangsspannung                                               | V– | 48                                            |
| Spannungsbereich                                                         | V– | 41 bis 63                                     |
| Bemessungsladestrom                                                      | A- | 63                                            |
| Bemessungsentladestrom                                                   | A- | 75                                            |
| Max. Ladestrom                                                           | A- | 75                                            |
| Allgemeine Daten                                                         |    |                                               |
| Überspannungskategorie                                                   |    | III                                           |
| IK-Code                                                                  |    | IK06                                          |
| (mechanische Beanspruchung)                                              |    |                                               |
| Schutzart                                                                |    | IP 20                                         |
| Schutzklasse                                                             |    | 1                                             |
| Gewicht                                                                  |    |                                               |
| <ul> <li>Vitocharge ohne Batteriemodule</li> </ul>                       | kg | ca. 100                                       |
| - Vitocharge mit 4 Batteriemodulen                                       | kg | ca. 275                                       |
| Zulässige Umgebungstemperaturen                                          |    |                                               |
| – Betrieb                                                                |    | +10 bis +30 °C                                |
|                                                                          |    | bei relativer Luftfeuchtigkeit von 5 bis 85 % |
| <ul> <li>Lagerung und Transport Vitocharge ohne Batteriemodul</li> </ul> |    | −20 bis +65 °C                                |
| <ul> <li>Lagerung und Transport Batteriemodul</li> </ul>                 |    | Siehe "Technische Daten" "Batteriemodul"      |
| Umweltkategorie                                                          |    | Klimatisiert in Innenräumen                   |
|                                                                          |    | Keine Kondensation                            |
| Absicherung Gleichstrom intern (NH00)                                    | Α  | 200                                           |
| Verschmutzungsgrad                                                       |    | 2                                             |
| <u> </u>                                                                 |    | <u> </u>                                      |

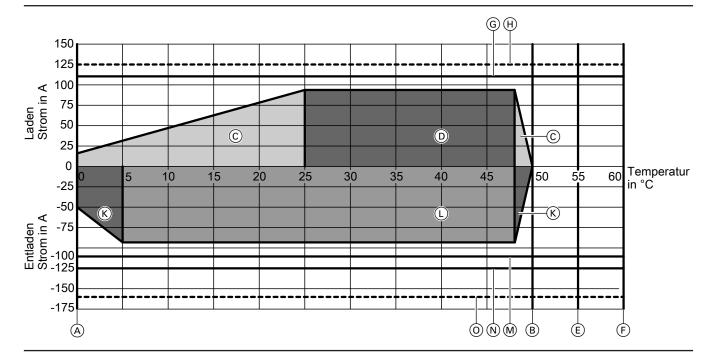
# Abmessungen




# 2.3 Technische Daten Batteriemodul, Typ 4.8A

# **Technische Daten**

Batteriemodule befinden sich in ständiger Weiterentwicklung. Für die aktuellsten Technischen Daten siehe **www.viessmann.com** im Bereich "Marktpartner" unter "Vitocharge".


| Batterietechnologie                                            |     | Li-lonen                                                   |
|----------------------------------------------------------------|-----|------------------------------------------------------------|
| Zellchemie                                                     |     | NMC                                                        |
| Bauform                                                        |     | Prismatisch                                                |
| Zellkonfiguration                                              |     | 14 seriell                                                 |
| Bemessungsspannung                                             | V-  | 52,5                                                       |
| Ladeschluss-Spannung                                           | V-  | 56,7                                                       |
| Entladeschluss-Spannung                                        | V-  | 46,6                                                       |
| Bemessungskapazität                                            | Ah  | 94                                                         |
| Bemessungsenergie                                              | kWh | 4,8                                                        |
| Nutzbare Energie                                               | kWh | 3,8                                                        |
| Nutzungsbereich der Batteriekapazität                          |     |                                                            |
| - Entladegrenze                                                |     | 15 %                                                       |
|                                                                |     | Anzeige: 0 % nutzbare Energie                              |
| - Ladegrenze                                                   |     | 95 %                                                       |
|                                                                |     | Anzeige: 100 % nutzbare Energie                            |
| Bemessungslade-/Bemessungsentladeleistung                      | kW  | 4,9                                                        |
| Bemessungsladestrom/Bemessungsentladestrom                     | Α   | 94                                                         |
| C-Rate Laden/Entladen                                          | С   | 1                                                          |
| Entladungstiefe                                                | %   | 80                                                         |
| Zyklenfestigkeit                                               |     | 5000                                                       |
| Erwartete Lebensdauer                                          |     | 20 Jahre                                                   |
| Batterie-Managementsystem                                      |     | Integriert                                                 |
| Kühlsystem                                                     |     | Passiv                                                     |
| Schutzklasse                                                   |     | III                                                        |
| Schutzart                                                      |     | IP 20                                                      |
| Zulässige Umgebungstemperaturen:                               |     |                                                            |
| <ul> <li>Lagerung</li> </ul>                                   |     | 0 bis 50 °C                                                |
|                                                                |     | bei relativer Luftfeuchtigkeit von 0 bis 50 %              |
| - Transport                                                    |     | 0 bis 60 °C                                                |
| – Betrieb                                                      |     | Siehe "Technische Daten" in der Montage- und Service-      |
|                                                                |     | anleitung "Vitocharge"                                     |
| Sicherheitskonzept                                             |     | 3 stufiges Sicherheitskonzept:                             |
|                                                                |     | - 1. Sicherheitsstufe: Komfortkreis                        |
|                                                                |     | - 2. Sicherheitsstufe: Sicherheitskreis                    |
|                                                                |     | Sicherheitsstufe: Selbstgreifende, zellinterne Maß- nahmen |
| Kommunikation zwischen Batterie-Managementsystem und Batterie- |     | CAN                                                        |
| Wechselrichter                                                 |     |                                                            |
| Gewicht                                                        | kg  | 44                                                         |
|                                                                |     | 1                                                          |

### Abmessungen



### Batterie-Kennlinien

Das Diagramm zeigt die möglichen Lade- und Entladeströme und deren zeitliche Dauer in Abhängigkeit der Temperatur. Um einen sicheren Betrieb innerhalb der zulässigen Temperaturgrenzen (innerhalb des Batteriemoduls) zu gewährleisten, sind in jedem Batteriemodul 10 Temperatursensoren eingebaut. Die Regelung überwacht diese Sensoren mit dem Batteriemanagement. Temperaturgrenzen siehe folgende Abb.



- (A) Untere Temperaturgrenze der 2. Sicherheitsstufe. Unterhalb dieser Temperatur sind Laden und Entladen gesperrt.
- (B) Abschaltung: Oberhalb dieser Temperatur sind Laden und Entladen gesperrt.
- © Laden leistungsbegrenzt freigegeben
- (D) Laden freigegeben
- © Obere Temperaturgrenze der 1. Sicherheitsstufe
- (F) Obere Temperaturgrenze der 2. Sicherheitsstufe
- Ladestromgrenze 1. Sicherheitsstufe: Laden mit Zeitbegrenzung 10 s
- (H) Ladestromgrenze 2. Sicherheitsstufe: Laden mit Zeitbegrenzung 9 s
- K Entladen leistungsbegrenzt freigegeben
- (L) Entladen freigegeben
- Entladestromgrenze 1. Sicherheitsstufe: Entladen mit Zeitbegrenzung 10 s
- Entladestromgrenze 2. Sicherheitsstufe: Entladen mit Zeitbegrenzung 9 s
- Entladestromgrenze 2. Sicherheitsstufe: Entladen mit Zeitbegrenzung 0,4 s

### **Transport von Batteriemodulen**

Batteriemodule mit Lithium-lonen-Technologie unterliegen der Gefahrgutklasse 9. Ohne besondere Genehmigung dürfen max. 333 kg (1000 Punkte) gleichzeitig in einem Fahrzeug transportiert werden.

# Installationszubehör

# 3.1 Vitocharge

### Batteriemodul, Typ 4.8A

Best.-Nr. 7690892

Technische Daten siehe ab Seite 12.

### Stromsensor

- Stromsensor mit integriertem Energiemanager und Energiemonitoring (SHM 2.0): Best.-Nr. 7741366
- Stromsensor (E-Meter 2.0): Best.-Nr. 7201864

### Stromsensor

- Zur Messung der Netzeinspeisung und des Netzbezugs
- Hutschienenaufnahme zur Installation in Zählerschränken
- Nennspannung: 230 V/400 V
- Frequenz: 50 Hz/60 Hz/± 5 %

- Nennstrom: 5 A
- Max. Strom pro Phase: 63 A

### Energiemanager

- Funktionalität Home Manager 2.0
- Für Energiemonitoring und intelligentes Energiemanagement
- Für Energiesysteme bestehend aus Vitocharge und Photovoltaik-

### Umschalteinrichtung

- Für 1 Erzeugungsanlage, z. B. Vitovolt: Best.-Nr. ZK03785
- Für 2 Erzeugungsanlagen, z. B. Vitovalor und Vitovolt: Best.-Nr. ZK02599
- Normkonforme Netztrennung zur Netzersatzversorgung bei Netz-
- Phasenkopplung zur Versorgung der elektrischen Verbraucher aller Phasen
- Unterstützung TN-C- und TN-S-Netze
- Integration des Stromsensors vorbereitet

### **Produktinformation**

## 4.1 Aufstellung, Montage

### Aufstellbedingungen

### Anforderungen an den Aufstellraum:

- Das Stromspeichersystem (Schutzart IP 20) min. 300 mm oberhalb der Rückstauebene (Hochwasserschutz) installieren. Nicht in hochwassergefährdeten Bereichen aufstellen.
- Der Aufstellraum muss sauber und trocken sein. Die Staubentwicklung darf das Maß eines üblichen Wohnhauses nicht überschreiten
- Umgebungstemperaturen beachten, siehe Kapitel "Technische Daten".
- Das Gewicht des Stromspeichers liegt je nach Ausstattungsgrad zwischen 145 und 275 kg. Der Boden muss ausreichend tragfähig und eben sein.
- Nicht in Höhen über 2000 m über NN betreiben.
- Ausschließlich in Innenräumen aufstellen.

- Nicht in explosionsgefährdeten Bereichen (z. B. Mehlstaub, Sägestaub) betreiben.
- Nicht in Bereichen mit brennbaren Gasen oder leicht entflammbaren Stoffen betreiben.
- Nicht in der Umgebung korrosiver Gase betreiben.
- Keiner direkten Sonneneinstrahlung aussetzen.
- Gerät nicht abdecken oder zustellen.
- Keine Gegenstände auf dem Gerät abstellen.
- Keine Brandlasten im Aufstellraum lagern.
- Im Fehlerfall kann es zum Ausgasen der Batteriemodule kommen. Deshalb für eine gute Durchlüftung des Aufstellraums sorgen.
- Empfehlung:
   Der Aufstellraum sollte gemäß der Feuerwiderstandsklasse F30 ausgeführt sein.

### Montageort wählen

Der Montageort darf den Zugang zu Abschalteinrichtungen nicht versperren.

Bei der Auswahl der Montageorte der folgenden Komponenten darauf achten, dass zwischen den einzelnen Komponenten der Anlage elektrische Verbindungen hergestellt werden müssen. Das können 230-V-Leitungen und Datenleitungen sein.

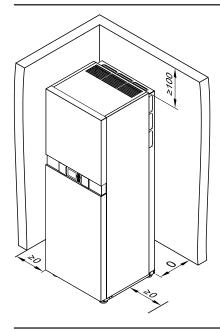
Um die Anschlussleitungen kurz zu halten, das Stromspeichersystem in der Nähe der elektrischen Hauptverteilung aufstellen.

### Mögliche Geräte der Anlage:

- Stromspeichersystem
- Zusätzlicher Wärme-/Stromerzeuger
- Elektrische Hauptverteilung

- Stromsensor/Energiemanager
- Wechselrichter der Solaranlage
- Verschiedene Stromzähler
- Umschalteinrichtung

### Hinweis


- Für den Aufbau sind 2 Personen erforderlich.
- Die Batteriemodule werden separat angeliefert. Sie sind einzeln verpackt. Die Batteriemodule dürfen erst nach der Montage und dem elektrischen Anschluss zum Zeitpunkt der Inbetriebnahme des Gesamtsystems in das Stromspeichersystem eingesetzt werden. Erst mit den eingesetzten Batteriemodulen erhält der Stromspeicher seine erforderliche Standsicherheit.

### Platzbedarf und Mindestabstände

### Abstandsmaße für Montage, Wartung und Service

# 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 1

### Abstandsmaße für den Betrieb



- Zur Belüftung über dem Gerät einen Abstand von min. 100 mm zur Raumdecke einhalten.
- Der Vitocharge muss für den Betrieb direkt an der Wand stehen, da sonst die Kippsicherung nicht montiert werden kann.

### 4.2 Elektrischer Anschluss

- In einem 1-phasigen Ersatzstromnetz darf nur 1 Vitocharge installiert werden.
- Überspannungskategorie:
- Der Vitocharge kann an Netzen der Überspannungskategorie III oder niedriger nach IEC 60664-1 eingesetzt werden. Der Vitocharge kann damit am Netzanschlusspunkt in einem Gebäude permanent angeschlossen werden (in der Netzverteilung und dieser nachgeschaltet). Ein Anschluss über lange Leitungswege im Freien kann zu einer Erhöhung der Überspannungskategorie führen und ist damit nicht zulässig.
- Alle Anschlussleitungen werden von hinten in den Stromspeicher eingeführt.
- Höhe der fest integrierten Leitungseinführungen: 1000 bis 1100 mm
  - Die zusätzlichen Zugentlastungen sind in der Höhe variabel mon-
- Die zu verwendenden Leiterquerschnitte sind im Anschlussplan und auf Aufklebern im Gerät genannt.
- Für Servicearbeiten:
- Damit der Vitocharge von der hinteren Wand abgerückt werden kann, die Wechselspannungsleitungen hinter dem Vitocharge 1200 mm länger ausführen als erforderlich.

- Je nach Betriebsweise und eingesetzten Stromerzeugern sind eine unterschiedliche Anzahl von Stromzählern erforderlich. Einzusetzende Typen und deren Platzbedarf mit dem Energieversorgungsunternehmen abklären.
- In Block- und Anschlussplänen ist der Vitocharge mit unterschiedlichen Erzeugeranlagen dargestellt, siehe ab Seite??. Die Positionierung der jeweiligen Komponenten im Stromnetz und deren genauer Anschluss werden beschrieben.
- Im Vitocharge befindet sich ein NF-Transformator mit verstärkter Isolierung.
- Im Strompfad "AC2" (Leistungsausgang Vitocharge) müssen ein Leitungsschutzschalter und eine Fehlerstrom-Schutzeinrichtung installiert sein. Beide Komponenten müssen nach den vor Ort gültigen Normen und Richtlinien ausgelegt werden.

Leitungsschutzschalter: max. C 32 A

Fehlerstrom-Schutzeinrichtung: 40 A/0,03 A Typ A

### Hinweis

In der Umschalteinrichtung (Zubehör) sind ein Leitungsschutzschalter und Fehlerstrom-Schutzeinrichtung bereits eingebaut.

# 4.3 Netzwerkeinbindung

Die Funktionen des Stromspeichersystems können auch über die Benutzeroberfläche des Wechselrichters an einem PC oder Laptop angezeigt werden. Das Stromspeichersystem muss dazu über den Anschluss "LAN1" der Konsole BUS-Anschlüsse in ein lokales Netzwerk eingebunden werden.

### Hinweis

Falls kein Router angeschlossen wird, Stromsensor/Energiemanager direkt am Anschluss "LAN1" der Konsole BUS-Anschlüsse anschlie-

Erforderliche LAN-Verbindungsleitungen: bauseits

Max. Leitungslänge der Datenleitungen: 20 m



- Vitocharge
- Wechselrichter (B)
- Anschluss "LAN1" an der Konsole BUS-Anschlüsse
- Router und/oder Switch
- Stromsensor/Energiemanager E
- PC/Laptop

## 4.4 Bestimmungsgemäße Verwendung

Das Stromspeichersystem Vitocharge ist Teil eines Systems zur Erzeugung, Einspeisung und Eigennutzung von elektrischem Strom. Eine andere Verwendung als in der "Bestimmungsgemäßen Verwendung" beschrieben, gilt als nicht bestimmungsgemäß.

Bei unsachgemäßer oder nicht bestimmungsgemäßer Verwendung besteht Gefahr für Leib und Leben des Nutzers oder Dritter. Beeinträchtigungen des Geräts und anderer Sachwerte können entstehen. Weitere Hinweise und Formulare für die Inbetriebnahme (z. B. Anträge, Konformitätsnachweise, Förderung) siehe www.viessmann.de im Bereich "Marktpartner" unter "Vitocharge".

### **Erlaubte Verwendung**

Das Stromspeichersystem Vitocharge ausschließlich zur Speicherung elektrischer Energie verwenden.

Das Stromspeichersystem Vitocharge ausschließlich mit den zugehörigen Viessmann Batteriemodulen und Zubehörteilen betreiben. Die Viessmann Batteriemodule dürfen ausschließlich im zugehörigen Vitocharge verwendet werden. Siehe Titelseite Montage- und Serviceanleitung "Batteriemodul".

Montage- und Serviceanleitung, Bedienungsanleitung sowie alle weiteren mitgelieferten Anleitungen beachten. Technische Unterlagen jederzeit zugänglich aufbewahren.

Vitocharge nur nach den vor Ort gültigen Normen und Richtlinien einsetzen.

Bestimmungsgemäße Verwendung liegt nur vor, wenn alle Anforderungen an den Aufstellraum und den ordnungsgemäßen Betrieb eingehalten werden.

Jede andere Verwendung ist nicht bestimmungsgemäß.

### Batteriemodule:

- Batteriemodule und Umgebung der Batteriemodule vor offenen Flammen, Glut und Funken schützen.
- Batteriemodule entsprechend den Herstellervorgaben installieren und betreiben
- Hinweise des Herstellers auf dem Gehäuse des Batteriemoduls beachten

### Fehlanwendungen

- Vitocharge nicht in Fahrzeugen betreiben.
- Gehäuse der Batteriemodule nicht öffnen oder demontieren.
- Batteriemodule nicht außerhalb des Vitocharge betreiben.
   Batteriemodule nicht an andere Geräte anschließen.
- Batteriemodule nicht außerhalb der vom Hersteller freigegebenen Betriebsbereiche (Spannung, Strom, Temperatur usw.) betreiben oder lagern.
- Batteriemodule nicht in überflutungsgefährdeten Räumen betreiben oder lagern.

### Hauptsächliche Gefährdungen

Medizinische Geräte (z. B. Herzschrittmacher) können durch die hohen elektrischen Ströme gestört werden. Personen mit solchen Geräten dürfen sich nicht in unmittelbarer Nähe des Vitocharge aufhalten.

Im Fehlerfall kann es zum Ausgasen der Batteriemodule kommen. Deshalb für ausreichende Belüftung des Aufstellraums sorgen.

Bei Fehlanwendungen (Kontakt mit Flüssigkeiten) oder technischem Ausfall (Störung der Regelung durch elektromagnetische Strahlung) können folgende Gefahren auftreten:

- Feuer
- Explosion
- Chemische Verätzungen
- Stromschlag

Durch Überlast, Kurzschluss und Lichtbogen kann ein Lithium-Ionen-Brand mit thermischem Durchgehen entstehen. Personen können durch Elektrolyt oder geschmolzenes Material verletzt werden. Im Brandfall besteht Erstickungsgefahr durch Sauerstoffmangel und Vergiftungsgefahr durch giftige Dämpfe.

# 4.5 Nachrüstung weiterer Batteriemodule

Innerhalb des ersten Jahres nach der Inbetriebnahme kann der Vitocharge mit weiteren Batteriemodulen nachgerüstet werden. Eine Nachrüstung nach Ablauf des ersten Betriebsjahres ist aus technischen Gründen nicht möglich.

Es dürfen nur Batteriemodule vom Typ 4.8A nachgerüstet werden.

# 4.6 Auslegung der Stromspeichergröße für den Netzparallelbetrieb

Im Netzparallelbetrieb arbeitet der Stromspeicher als lokaler Puffer zwischen Erzeugung und Verbrauch. Überschüssige, nicht mehr speicherbare erzeugte Energie (Stromspeicher zu 100 % geladen) wird in das öffentliche Stromnetz eingespeist. Bei höherem Verbrauch (Stromspeicher ist leer, wurde schon entladen) wird zusätzliche elektrische Energie aus dem öffentlichen Stromnetz bezogen. Entsprechend wird die Größe des Stromspeichers auf der Basis der nutzbaren Batteriekapazität (abzüglich Verluste) ausgewählt. Für Anlagen im Netzparallelbetrieb spielt die Leistung des Batterie-Wechselrichters eine untergeordnete Rolle (im Einfamilienhaushalt genügt meist eine Leistung von 2 bis 3 kVA).

Lokal installierte Erzeugungsanlagen und Stromspeicher im Netzparallelbetrieb werden vorrangig nach der zu erzielenden Eigenverbrauchsquote und der Autarkiequote ausgelegt.

### Eigenverbrauchsquote

Die Eigenverbrauchsquote (EQ) beschreibt den Nutzungsgrad der Eigenerzeugung bezogen auf 1 Kalenderjahr. Übrige erzeugte Energie wird in der Regel in das Stromnetz eingespeist.

Eigenverbrauchsquote (%) = Eigenstromverbrauch/Eigenstromerzeugung

### Autarkiequote

Die Autarkiequote (AQ) beschreibt den Anteil des selbst erzeugten und verbrauchten Stroms vom Gesamt-Stromverbrauch im Haushalt bezogen auf 1 Kalenderjahr.

Autarkiequote (%) = Eigenstromverbrauch/Gesamtstromverbrauch

5776310

### Kombination Stromspeicher (Vitocharge) und Photovoltaik (Vitovolt)

In einem typischen Einfamilienhaus mit einem Stromverbrauch von 4500 kWh pro Jahr und einer installierten Photovoltaik-Anlage von 5 kWperreicht man ohne Stromspeicher im Durchschnitt eine Eigenverbrauchsquote von ca. 30 %. Durch die Installation eines Stromspeichers kann sich z. B. die Photovoltaik-Eigenverbrauchsquote auf ca. 60 % erhöhen. Eine Photovoltaik-Eigenverbrauchsquote von ca. 50 bis 75 % stellt eine energetisch optimale Auslegung mit Stromspeicher dar. Eine weitere Erhöhung der Eigenverbrauchsquote (z. B. auf 98 %) wäre durch eine überproportionale Dimensionierung möalich.

In der folgenden Tabelle wurde jeweils der passende Stromspeicher zur bestmöglichen Erzielung einer Eigenverbrauchsquote von ca. 60 % gewählt.

| Stromverbrauch | Leistung Photovoltaikanlage |    |    |       |    |    |       |    |    |     |       |    |  |  |
|----------------|-----------------------------|----|----|-------|----|----|-------|----|----|-----|-------|----|--|--|
|                | 2 kWp                       |    |    | 3 kWp |    |    | 4 kWp |    |    |     | 5 kWp |    |  |  |
|                | NBK                         | EQ | AQ | NBK   | EQ | AQ | NBK   | EQ | AQ | NBK | EQ    | AQ |  |  |
| in             | in                          | in | in | in    | in | in | in    | in | in | in  | in    | in |  |  |
| kWh/a          | kWh                         | %  | %  | kWh   | %  | %  | kWh   | %  | %  | kWh | %     | %  |  |  |
| 3000           | 2,5                         | 74 | 49 | 2,5   | 57 | 56 | 7,5   | 58 | 72 | 7,5 | 48    | 78 |  |  |
| 3500           | 2,5                         | 79 | 44 | 2,5   | 61 | 53 | 5,0   | 61 | 65 | 7,5 | 53    | 74 |  |  |
| 4000           | 2,5                         | 83 | 40 | 2,5   | 65 | 48 | 5,0   | 65 | 61 | 7,5 | 58    | 70 |  |  |
| 4500           | 0                           | 68 | 30 | 2,5   | 69 | 45 | 5,0   | 69 | 57 | 5,0 | 58    | 63 |  |  |
| 5000           | 0                           | 73 | 28 | 2,5   | 72 | 43 | 2,5   | 62 | 46 | 5,0 | 61    | 59 |  |  |
| 6500           | 0                           | 80 | 26 | 0     | 63 | 31 | 2,5   | 67 | 42 | 2,5 | 57    | 46 |  |  |

| Stromverbrauch | Leistung F | Photovoltaik | anlage |       |    |    |        |    |    |  |  |
|----------------|------------|--------------|--------|-------|----|----|--------|----|----|--|--|
|                | 6 kWp      |              | _      | 7 kWp |    |    | 10 kWp |    |    |  |  |
|                | NBK        | EQ           | AQ     | NBK   | EQ | AQ | NBK    | EQ | AQ |  |  |
| in             | in         | in           | in     | in    | in | in | in     | in | in |  |  |
| kWh/a          | kWh        | %            | %      | kWh   | %  | %  | kWh    | %  | %  |  |  |
| 3000           | 7,5        | 42           | 80     | 7,5   | 36 | 83 | 7,5    | 27 | 88 |  |  |
| 3500           | 7,5        | 47           | 77     | 7,5   | 41 | 80 | 7,5    | 30 | 84 |  |  |
| 4000           | 7,5        | 51           | 73     | 7,5   | 44 | 77 | 7,5    | 33 | 81 |  |  |
| 4500           | 7,5        | 55           | 70     | 7,5   | 48 | 74 | 7,5    | 36 | 78 |  |  |
| 5000           | 7,5        | 59           | 67     | 7,5   | 51 | 71 | 7,5    | 39 | 76 |  |  |
| 6000           | 5,0        | 59           | 56     | 7,5   | 57 | 66 | 7,5    | 43 | 71 |  |  |

Standort: Frankfurt am Main mit einem Photovoltaik-Ertrag von ca. 950 kWh/kWp.

Für die individuelle Planung und Simulation einer energetisch sinnvollen Auslegung stellt Viessmann eine Auswahl von Viessmann Anlagenschemen in Polysun zur Verfügung. Polysun bietet auch die Möglichkeit, eigene Anlagenschemen zu erstellen und eigene Lastprofile zu verwenden.

NBK Empfohlene nutzbare Batteriekapazität

Eigenverbrauchsquote (in %) = Eigenstromverbrauch / Eigenstromerzeugung

Autarkiequote (in %) = Eigenstromverbrauch / Gesamtstrom-AQ verbrauch

### Beispiel:

Der Haushalt hat einen Stromverbrauch von ca. 4500 kWh/Jahr. Bei einer PV-Anlage mit 5 kWp (5 x 950 kWh/kWp/a) und einer nutzbaren Batteriekapazität von 5 kWh ergibt sich eine Eigenverbrauchsquote von ca. 58 % und eine Autarkiequote von ca. 63 %. Abschätzung des Eigenstromverbrauchs: 58 % von 4750 kWh/a = ca. 2755 kWh/a.

Die Netzeinspeisung beträgt ca. 1995 kWh/a.

### Kombination Wärmepumpe (Vitocal), Stromspeicher (Vitocharge) und Photovoltaik (Vitovolt)

Durch die Installation einer Wärmepumpe kann die PV-Eigenverbrauchsquote, abhängig vom Anwendungsfall, um 5 bis 30 % erhöht werden. Abhängig von der installierten Nenn-Wärmeleistung (abzudeckender Wärmebedarf) der Wärmepumpe erhöht sich der jährliche Strombedarf der Wärmepumpe. In der folgenden Tabelle kann eine naheliegende Kombination aus Haushaltstromprofil und Wärmepumpenleistung ausgewählt werden. Dazu wurde der jeweils passende Stromspeicher zur bestmöglichen Erzielung einer Eigenverbrauchsquote von ca. 70 % gewählt.

| Stromver-     | Bedarf      | Strom-     | Leistur  | ng Photo | ovoltaika | anlage |    |    |       |    |    |       |    |    |
|---------------|-------------|------------|----------|----------|-----------|--------|----|----|-------|----|----|-------|----|----|
| brauch        | Warm-       | ver-       | 2,5 kW   | p        |           | 3 kWp  |    |    | 4 kWp |    |    | 5 kWp |    |    |
| Haushalt      | wasser      | brauch     | NBK      | EQ       | AQ        | NBK    | EQ | AQ | NBK   | EQ | AQ | NBK   | EQ | AQ |
|               |             | Wärme-     |          |          |           |        |    |    |       |    |    |       |    |    |
|               |             | pumpe      |          |          |           |        |    |    |       |    |    |       |    |    |
| in            | in          | in         | in       | in       | in        | in     | in | in | in    | in | in | in    | in | in |
| kWh/a         | I/d         | kWh/a      | kWh      | %        | %         | kWh    | %  | %  | kWh   | %  | %  | kWh   | %  | %  |
| Max. Heizleis | tung 4 kW   | Heizwärmeb |          | . 7000 k | Wh/a)     |        |    |    |       |    |    |       |    |    |
| 3000          | 100         | 3300       | 2,5      | 78       | 24        | 5,0    | 74 | 34 | 7,5   | 69 | 41 | 10,0  | 63 | 48 |
| 3500          | 150         | 3500       | 2,5      | 83       | 23        | 2,5    | 67 | 28 | 7,5   | 74 | 39 | 10,0  | 68 | 46 |
| 4000          | 200         | 3800       | 2,5      | 86       | 21        | 2,5    | 70 | 27 | 5,0   | 71 | 34 | 7,5   | 68 | 42 |
| 4500          | 250         | 4000       | 2,5      | 88       | 20        | 2,5    | 72 | 25 | 5,0   | 72 | 32 | 7,5   | 70 | 40 |
| 5000          | 300         | 4200       | 2,5      | 90       | 19        | 2,5    | 76 | 24 | 5,0   | 75 | 31 | 7,5   | 73 | 38 |
| 6000          | 350         | 4400       | 2,5      | 94       | 18        | 2,5    | 82 | 23 | 2,5   | 72 | 26 | 5,0   | 71 | 33 |
| Max. Heizleis | tung 5 kW   | Heizwärmeb |          | . 8800 k | Wh/a)     |        |    |    |       |    |    |       |    |    |
| 3000          | 100         | 4200       | 2,5      | 76       | 21        | 5,0    | 72 | 30 | 7,5   | 68 | 36 | 10,0  | 63 | 42 |
| 3500          | 150         | 4400       | 2,5      | 81       | 20        | 2,5    | 65 | 24 | 7,5   | 72 | 34 | 10,0  | 67 | 41 |
| 4000          | 200         | 4600       | 2,5      | 84       | 19        | 2,5    | 68 | 23 | 5,0   | 69 | 30 | 7,5   | 67 | 37 |
| 4500          | 250         | 4900       | 2,5      | 86       | 18        | 2,5    | 71 | 22 | 5,0   | 71 | 29 | 7,5   | 69 | 35 |
| 5000          | 300         | 5100       | 2,5      | 89       | 17        | 2,5    | 74 | 22 | 5,0   | 74 | 28 | 7,5   | 71 | 34 |
| 6000          | 350         | 5300       | 2,5      | 93       | 16        | 2,5    | 80 | 21 | 2,5   | 70 | 23 | 5,0   | 69 | 30 |
| Max. Heizleis | tung 7 kW ( | Heizwärmeb | edarf ca | . 12 300 | kWh/a)    |        |    |    |       |    |    |       |    |    |
| 3000          | 100         | 5900       | 2,5      | 77       | 17        | 5,0    | 72 | 24 | 7,5   | 69 | 29 | 10,0  | 63 | 34 |
| 3500          | 150         | 6100       | 2,5      | 81       | 16        | 2,5    | 65 | 20 | 7,5   | 73 | 28 | 10,0  | 68 | 34 |
| 4000          | 200         | 6400       | 2,5      | 84       | 16        | 2,5    | 68 | 19 | 5,0   | 69 | 25 | 7,5   | 67 | 31 |
| 4500          | 250         | 6700       | 2,5      | 87       | 15        | 2,5    | 71 | 19 | 5,0   | 71 | 24 | 7,5   | 69 | 30 |
| 5000          | 300         | 6900       | 2,5      | 89       | 15        | 2,5    | 74 | 18 | 5,0   | 73 | 23 | 7,5   | 71 | 29 |
| 6000          | 350         | 7100       | 2,5      | 93       | 14        | 2,5    | 79 | 18 | 2,5   | 70 | 20 | 5,0   | 69 | 25 |
| Max. Heizleis | tung 10 kW  | (Heizwärme | bedarf c | a. 17 60 | 0 kWh/a   | )      |    |    |       |    |    |       |    |    |
| 3000          | 100         | 6700       | 2,5      | 77       | 16        | 5,0    | 73 | 22 | 7,5   | 69 | 27 | 10,0  | 64 | 32 |
| 3500          | 150         | 6900       | 2,5      | 82       | 15        | 2,5    | 66 | 19 | 7,5   | 73 | 26 | 10,0  | 68 | 31 |
| 4000          | 200         | 7200       | 2,5      | 85       | 15        | 2,5    | 69 | 18 | 5,0   | 70 | 24 | 7,5   | 67 | 29 |
| 4500          | 250         | 7400       | 2,5      | 87       | 14        | 2,5    | 72 | 18 | 5,0   | 72 | 23 | 7,5   | 70 | 28 |
| 5000          | 300         | 7600       | 2,5      | 89       | 14        | 2,5    | 75 | 18 | 2,5   | 66 | 20 | 7,5   | 72 | 27 |
| 6000          | 350         | 7800       | 2,5      | 93       | 13        | 2,5    | 80 | 17 | 2,5   | 71 | 19 | 5,0   | 70 | 24 |
| Max. Heizleis | tung 13 kW  | (Heizwärme | bedarf c | a. 22 90 | 0 kWh/a   | )      |    |    |       |    |    |       |    |    |
| 3000          | 100         | 8700       | 2,5      | 78       | 13        | 5,0    | 73 | 19 | 7,5   | 69 | 22 | 10,0  | 64 | 27 |
| 3500          | 150         | 8900       | 2,5      | 81       | 13        | 2,5    | 66 | 16 | 7,5   | 73 | 22 | 10,0  | 68 | 27 |
| 4000          | 200         | 9100       | 2,5      | 85       | 13        | 2,5    | 69 | 16 | 5.0   | 70 | 20 | 7,5   | 68 | 25 |
| 4500          | 250         | 9400       | 2,5      | 87       | 12        | 2,5    | 72 | 15 | 5,0   | 72 | 20 | 7,5   | 70 | 24 |
| 5000          | 300         | 9600       | 2,5      | 89       | 12        | 2,5    | 75 | 15 | 2,5   | 66 | 17 | 7,5   | 72 | 24 |
| 6000          | 350         | 9800       | 2,5      | 93       | 12        | 2,5    | 80 | 15 | 2,5   | 71 | 17 | 5,0   | 70 | 21 |
| Max. Heizleis | tung 16 kW  | (Heizwärme | bedarf c | a. 28 20 | 0 kWh/a   | )      |    | -  |       | 1  | _  |       |    |    |
| 3000          | 100         | 10600      | 2,5      | 77       | 11        | 5,0    | 73 | 16 | 7,5   | 70 | 19 | 10,0  | 65 | 23 |
| 3500          | 150         | 10900      | 2,5      | 82       | 11        | 2,5    | 66 | 14 | 7,5   | 73 | 19 | 10,0  | 69 | 23 |
| 4000          | 200         | 11100      | 2,5      | 85       | 11        | 2,5    | 70 | 14 | 5,0   | 70 | 18 | 7,5   | 68 | 22 |
| 4500          | 250         | 11300      | 2,5      | 87       | 11        | 2,5    | 72 | 13 | 5,0   | 72 | 17 | 7,5   | 70 | 21 |
| 5000          | 300         | 11600      | 2,5      | 89       | 11        | 2,5    | 75 | 13 | 2,5   | 66 | 15 | 7,5   | 72 | 21 |
| 6000          | 350         | 11800      | 2,5      | 93       | 10        | 2,5    | 80 | 13 | 2,5   | 71 | 15 | 5,0   | 70 | 19 |
|               | 1           | 1 -        | ,,,      |          |           | · ,,   |    |    |       |    |    | 1 .,- |    |    |

| Stromver-     | Bedarf     | Strom-       | Leistung     | Photovolta | ikanlage |       |          |          |        |          |          |
|---------------|------------|--------------|--------------|------------|----------|-------|----------|----------|--------|----------|----------|
| brauch        | Warm-      | ver-         | 6 kWp        |            |          | 7 kWp |          |          | 10 kWp |          |          |
| Haushalt      | wasser     | brauch       | NBK          | EQ         | AQ       | NBK   | EQ       | AQ       | NBK .  | EQ       | AQ       |
|               |            | Wärme-       |              |            |          |       |          |          |        |          |          |
|               |            | pumpe        |              |            |          |       |          |          |        |          |          |
| in            | in         | in           | in           | in         | in       | in    | in       | in       | in     | in       | in       |
| kWh/a         | I/d        | kWh/a        | kWh          | %          | %        | kWh   | %        | %        | kWh    | %        | %        |
| Max. Heizleis |            | _            |              |            |          |       |          |          |        |          |          |
| 3000          | 100        | 3300         | 12,5         | 58         | 53       | 15,0  | 52       | 57       | 17,5   | 41       | 64       |
| 3500          | 150        | 3500         | 12,5         | 63         | 51       | 15,0  | 57       | 55       | 17,5   | 45       | 63       |
| 4000          | 200        | 3800         | 10,0         | 65         | 48       | 12,5  | 60       | 53       | 15,0   | 48       | 60       |
| 4500          | 250        | 4000         | 10,0         | 68         | 46       | 12,5  | 64       | 51       | 15,0   | 51       | 59       |
| 5000          | 300        | 4200         | 10,0         | 71         | 44       | 12,5  | 67       | 50       | 15,0   | 55       | 58       |
| 6000          | 350        | 4400         | 7,5          | 70         | 39       | 10,0  | 68       | 45       | 12,5   | 58       | 54       |
| Max. Heizleis |            |              |              |            | 1 47     | 45.0  |          |          | 47.5   | 10       |          |
| 3000          | 100        | 4200         | 12,5         | 58         | 47       | 15,0  | 53       | 51       | 17,5   | 43       | 58       |
| 3500          | 150        | 4400         | 12,5         | 62         | 45       | 15,0  | 57       | 50       | 17,5   | 46       | 57       |
| 4000          | 200        | 4600         | 10,0         | 64         | 42       | 12,5  | 59       | 47       | 15,0   | 48       | 55       |
| 4500          | 250        | 4900         | 10,0         | 67         | 41       | 12,5  | 63       | 46       | 15,0   | 52       | 54       |
| 5000<br>6000  | 300<br>350 | 5100<br>5300 | 10,0<br>7,5  | 70<br>68   | 40<br>35 | 12,5  | 66<br>67 | 45<br>41 | 15,0   | 54<br>57 | 53<br>49 |
| Max. Heizleis |            |              |              | ļ          |          | 10,0  | 07       | 41       | 12,5   | 57       | 49       |
| 3000          | 100        | 5900         | 12,5         | 60         | 39       | 15,0  | 55       | 43       | 17,5   | 45       | 49       |
| 3500          | 150        | 6100         | 12,5         | 64         | 38       | 15,0  | 59       | 43       | 17,5   | 48       | 49       |
| 4000          | 200        | 6400         | 10,0         | 65         | 36       | 12,5  | 61       | 40       | 15,0   | 50       | 47       |
| 4500          | 250        | 6700         | 10,0         | 67         | 35       | 12,5  | 64       | 39       | 15,0   | 53       | 46       |
| 5000          | 300        | 6900         | 10,0         | 70         | 34       | 12,5  | 66       | 38       | 15,0   | 55       | 46       |
| 6000          | 350        | 7100         | 7,5          | 68         | 30       | 10,0  | 67       | 35       | 12,5   | 57       | 43       |
| Max. Heizleis | tung 10 kW | (Heizwärme   |              | 17 600 kWł | n/a)     | · · · | ļ        |          |        | ļ        | <u> </u> |
| 3000          | 100        | 6700         | 12,5         | 60         | 35       | 15,0  | 56       | 39       | 17,5   | 46       | 46       |
| 3500          | 150        | 6900         | 12,5         | 64         | 35       | 15,0  | 59       | 39       | 17,5   | 49       | 46       |
| 4000          | 200        | 7200         | 10,0         | 65         | 33       | 12,5  | 61       | 37       | 15,0   | 50       | 44       |
| 4500          | 250        | 7400         | 10,0         | 67         | 33       | 12,5  | 64       | 37       | 15,0   | 53       | 44       |
| 5000          | 300        | 7600         | 10,0         | 70         | 32       | 12,5  | 66       | 36       | 15,0   | 56       | 43       |
| 6000          | 350        | 7800         | 7,5          | 69         | 29       | 10,0  | 67       | 33       | 12,5   | 57       | 41       |
| Max. Heizleis | tung 13 kW | (Heizwärme   | bedarf ca. : | 22 900 kWł | n/a)     |       |          |          |        |          |          |
| 3000          | 100        | 8700         | 12,5         | 61         | 30       | 15,0  | 57       | 34       | 17,5   | 47       | 40       |
| 3500          | 150        | 8900         | 12,5         | 65         | 30       | 15,0  | 60       | 33       | 17,5   | 50       | 40       |
| 4000          | 200        | 9100         | 10,0         | 65         | 29       | 12,5  | 61       | 32       | 15,0   | 52       | 38       |
| 4500          | 250        | 9400         | 10,0         | 68         | 28       | 12,5  | 64       | 32       | 15,0   | 54       | 38       |
| 5000          | 300        | 9600         | 10,0         | 70         | 28       | 12,5  | 67       | 32       | 15,0   | 56       | 38       |
| 6000          | 350        | 9800         | 7,5          | 69         | 25       | 10,0  | 68       | 29       | 12,5   | 58       | 36       |
| Max. Heizleis |            |              |              |            |          |       | _        |          |        |          |          |
| 3000          | 100        | 10600        | 12,5         | 62         | 26       | 15,0  | 58       | 29       | 17,5   | 49       | 35       |
| 3500          | 150        | 10900        | 12,5         | 65         | 26       | 15,0  | 61       | 29       | 17,5   | 5        | 35       |
| 4000          | 200        | 11100        | 10,0         | 66         | 25       | 12,5  | 62       | 28       | 15,0   | 52       | 34       |
| 4500          | 250        | 11300        | 10,0         | 68         | 25       | 12,5  | 65       | 28       | 15,0   | 55       | 34       |
| 5000          | 300        | 11600        | 10,0         | 71         | 25       | 12,5  | 67       | 28       | 15,0   | 57       | 34       |
| 6000          | 350        | 11800        | 7,5          | 69         | 22       | 10,0  | 68       | 26       | 12,5   | 58       | 32       |

Die Auslegungsbeispiele in der Tabelle wurden mit der Polysun-Software für Planer und Projektierer (Fa. Velasolaris, **www.velasola-ris.com**) erstellt.

Hierzu wurde ein häufig für Wärmepumpen genutztes Anlagenschema verwendet:

- Anlagenschema 4605358: Heizwasser-Pufferspeicher, 200 I und Speicher-Wassererwärmer, 300 I, siehe www.viessmann-schemes.com
- Standort: Frankfurt am Main mit einem Photovoltaik-Ertrag von ca. 950 kWh/kWp

Für die individuelle Planung und Simulation einer energetisch sinnvollen Auslegung stellt Viessmann eine Auswahl von Viessmann Anlagenschemen in Polysun zur Verfügung. Polysun bietet auch die Möglichkeit, eigene Anlagenschemen zu erstellen und eigene Lastprofile zu verwenden.

- NBK Empfohlene nutzbare Batteriekapazität
- **EQ** Eigenverbrauchsquote (in %) = Eigenstromverbrauch / Eigenstromerzeugung
- **AQ** Autarkiequote (in %) = Eigenstromverbrauch / Gesamtstromverbrauch

### Beispiel:

Das Haus hat eine installierte Wärmepumpe mit 10 kW Heizleistung (Stromverbrauch ca. 7400 kWh/a) und einen Hausstromverbrauch von ca. 4500 kWh/a.

Bei einer Photovoltaikanlage mit ca. 5 kWp (5 x 950 kWh/kWp/a) und einer nutzbaren Batteriekapazität von 7,5 kWh ergibt sich eine Eigenverbrauchsquote von ca. 70 % und eine Autarkiequote von ca. 28 %

Abschätzung des Eigenstromverbrauchs: 70 % von 4750 kWh/a = ca. 3325 kWh/a

Die Netzeinspeisung beträgt ca. 1425 kWh/a.

# Kombination Warmwasser-Wärmepumpe (Vitocal 161-A, 1,67 kW), Stromspeicher (Vitocharge) und Photovoltaik (Vitovolt)

In der Tabelle kann eine Kombination von Haushaltsstromprofil und Trinkwasserwärmebedarf ausgewählt werden.

Dazu wurde der jeweils passende Stromspeicher zur bestmöglichen Erzielung einer Eigenverbrauchsquote von ca. 60 % gewählt.

| Stromver- | Bedarf | Strom-                    | Leistur | ng Photo | ovoltaika | anlage |    |    |       |    |    |       |    |    |
|-----------|--------|---------------------------|---------|----------|-----------|--------|----|----|-------|----|----|-------|----|----|
| brauch    | Warm-  | ver-                      | 2,5 kWp |          |           | 3 kWp  |    |    | 4 kWp |    |    | 5 kWp |    |    |
| Haushalt  | wasser | brauch<br>Wärme-<br>pumpe | NBK     | EQ       | AQ        | NBK    | EQ | AQ | NBK   | EQ | AQ | NBK   | EQ | AQ |
| in        | in     | in                        | in      | in       | in        | in     | in | in | in    | in | in | in    | in | in |
| kWh/a     | I/d    | kWh/a                     | kWh     | %        | %         | kWh    | %  | %  | kWh   | %  | %  | kWh   | %  | %  |
| 3000      | 100    | 700                       | 2,5     | 76       | 40        | 2,5    | 58 | 47 | 2,5   | 49 | 50 | 5,0   | 51 | 67 |
| 3500      | 150    | 1000                      | 2,5     | 82       | 36        | 2,5    | 65 | 43 | 2,5   | 56 | 47 | 5,0   | 57 | 61 |
| 4000      | 200    | 1200                      | 2,5     | 85       | 32        | 2,5    | 69 | 39 | 2,5   | 59 | 42 | 5,0   | 59 | 54 |
| 4500      | 250    | 1500                      | 2,5     | 87       | 28        | 2,5    | 70 | 35 | 2,5   | 61 | 38 | 5,0   | 61 | 49 |
| 5000      | 300    | 1700                      | 2,5     | 89       | 26        | 2,5    | 73 | 32 | 2,5   | 63 | 35 | 5,0   | 63 | 45 |
| 6000      | 350    | 1900                      | 2,5     | 93       | 23        | 2,5    | 79 | 29 | 2,5   | 69 | 33 | 2,5   | 59 | 36 |

| Stromver- | Bedarf | Strom-                    | Leistung Photovoltaikanlage |    |    |       |    |    |        |    |    |  |  |  |
|-----------|--------|---------------------------|-----------------------------|----|----|-------|----|----|--------|----|----|--|--|--|
| brauch    | Warm-  | ver-                      | 6 kWp                       |    |    | 7 kWp |    |    | 10 kWp |    |    |  |  |  |
| Haushalt  | wasser | brauch<br>Wärme-<br>pumpe | NBK                         | EQ | AQ | NBK   | EQ | AQ | NBK    | EQ | AQ |  |  |  |
| in        | in     | in                        | in                          | in | in | in    | in | in | in     | in | in |  |  |  |
| kWh/a     | I/d    | kWh/a                     | kWh                         | %  | %  | kWh   | %  | %  | kWh    | %  | %  |  |  |  |
| 3000      | 100    | 700                       | 7,5                         | 48 | 75 | 7,5   | 42 | 78 | 10,0   | 32 | 85 |  |  |  |
| 3500      | 150    | 1000                      | 7,5                         | 55 | 70 | 7,5   | 48 | 73 | 10,0   | 37 | 82 |  |  |  |
| 4000      | 200    | 1200                      | 7,5                         | 59 | 64 | 7,5   | 51 | 68 | 10,0   | 41 | 77 |  |  |  |
| 4500      | 250    | 1500                      | 7,5                         | 61 | 59 | 7,5   | 54 | 62 | 10,0   | 45 | 73 |  |  |  |
| 5000      | 300    | 1700                      | 7,5                         | 63 | 54 | 7,5   | 56 | 57 | 10,0   | 48 | 69 |  |  |  |
| 6000      | 350    | 1900                      | 5,0                         | 61 | 44 | 7,5   | 60 | 52 | 10,0   | 52 | 64 |  |  |  |

Die Auslegungsbeispiele in der Tabelle wurden mit der Polysun-Software für Planer und Projektierer (Fa. Velasolaris, **www.velasola-ris.com**) erstellt.

Hierzu wurde ein häufig für Warmwasser-Wärmepumpen genutztes Anlagenschema verwendet:

- Anlagenschema 4800117: Speicher-Wassererwärmer, 308 I, siehe www.viessmann-schemes.com
- Standort: Frankfurt am Main mit einem Photovoltaik-Ertrag von ca.
   950 kWh/kWp

Für die individuelle Planung und Simulation einer energetisch sinnvollen Auslegung stellt Viessmann eine Auswahl von Viessmann Anlagenschemen in Polysun zur Verfügung. Polysun bietet auch die Möglichkeit, eigene Anlagenschemen zu erstellen und eigene Lastprofile zu verwenden.

NBK Empfohlene nutzbare Batteriekapazität

**EQ** Eigenverbrauchsquote (in %) = Eigenstromverbrauch / Eigenstromerzeugung

**AQ** Autarkiequote (in %) = Eigenstromverbrauch / Gesamtstromverbrauch

### Beispiel:

Das Haus hat eine installierte Wärmepumpe mit 1,7 kW (Stromverbrauch ca. 1500 kWh/a bei einem Warmwasserbedarf von 250 l pro Tag) und einem Hausstromverbrauch von ca. 4500 kWh/a. Bei einer Photovoltaikanlage mit ca. 5 kWp (5 x 950 kWh/kWp/a) und einer nutzbaren Batteriekapazität von 5 kWh ergibt sich eine Eigenverbrauchsquote von ca. 61 % und eine Autarkiequote von ca. 49 %.

Abschätzung des Eigenstromverbrauchs: 61 % von 4750 kWh/a = ca. 2897,5 kWh/a

Die Netzeinspeisung beträgt ca. 1852,5 kWh/a.

# Kombination Mikro-Kraftwärmekopplung (Mikro-KWK) mit Spitzenlast-Brennwertgerät (Vitovalor), Stromspeicher (Vitocharge) und Photovoltaik (Vitovolt)

KWK-Anlagen mit kleiner elektrischer Leistung, wie Vitovalor erreichen in einem Einfamilienhaus durch eine weitesgehende Abdeckung der Grundlast schnell hohe Eigenverbrauchsquoten. Die KWK-Anlage nutzt den Stromspeicher zur Zwischenspeicherung des erzeugten Stroms, wenn er nicht direkt verbraucht wird. Bei einem höheren Strombedarf kann eine Photovoltaikanlage hinzugefügt werden.

Durch das saisonal ausgeglichene Erzeugungsprofil ergeben sich im Durchschnitt höhere Autarkiequoten (Sommer: Stromerzeugung durch Photovoltaikanlage, Winter: Stromerzeugung durch KWK-Anlage).

In der Tabelle kann eine Kombination ausgewählt werden.

Für eine energetisch optimale Auslegung wurde eine kleine Stromspeichergröße gewählt. Mit einer kleinen Stromspeichergröße werden bereits Ziel-Eigenverbrauchsquoten von 70 % erreicht. Ein größerer Stromspeicher führt zu keiner oder nur geringen Ergebnisverbesserung.

Aufgrund der hohen Autarkiequoten (AQ 100 %: Eigenstromverbrauch = Gesamtstromverbrauch) führt eine Vergrößerung der Photovoltaikanlage zur einer höheren Netzeinspeisung.

VIESMANN

5776310

Ohne Photovoltaikanlage

| Stromver-                                                       | Bedarf | KWK Ei-  | NBK | EQ | AQ |
|-----------------------------------------------------------------|--------|----------|-----|----|----|
| brauch                                                          | Warm-  | gen-     |     |    |    |
| Haushalt                                                        | wasser | stromer- |     |    |    |
|                                                                 |        | zeugung  |     |    |    |
| in                                                              | in     | in       | in  | in | in |
| kWh/a                                                           | I/d    | kWh/a    | kWh | %  | %  |
| Vitovalor (Spitzenlastkessel 19 kWth, Brennstoffzelle 0,75 kWel |        |          |     |    |    |

und 1.0 kWth)

| and i,o keet | •••, |      |     |    |     |
|--------------|------|------|-----|----|-----|
| 3000         | 100  | 4600 | 2,5 | 65 | 98  |
| 3500         | 150  | 5100 | 2,5 | 70 | 100 |
| 4000         | 200  | 5400 | 2,5 | 75 | 100 |
| 4500         | 250  | 5500 | 2,5 | 82 | 100 |
| 5000         | 300  | 5600 | 2,5 | 89 | 99  |
| 6000         | 350  | 5700 | 2,5 | 96 | 90  |

Mit Photovoltaikanlage

| Stromver- | Bedarf | KWK Ei-  | Leistu | eistung Photovoltaikanlage |     |      |    |     |       |     |     |       |     |     |       |     |     |
|-----------|--------|----------|--------|----------------------------|-----|------|----|-----|-------|-----|-----|-------|-----|-----|-------|-----|-----|
| brauch    | Warm-  | gen-     | 2,5 kV | ٧p                         |     | 3 kW | 0  |     | 4 kWp | )   |     | 5 kWp | )   |     | 10 kW | /p  |     |
| Haushalt  | wasser | stromer- | NBK    | EQ                         | AQ  | NBK  | EQ | AQ  | NBK   | EQ  | AQ  | NBK   | EQ  | AQ  | NBK   | EQ  | AQ  |
|           |        | zeu-     |        |                            |     |      |    |     |       |     |     |       |     |     |       |     |     |
| in        | in     | gung     | in     | in                         | in  | in   | in | in  | in    | in  | in  | in    | in  | in  | in    | in  | in  |
| kWh/a     | I/d    | kWh/a    | kWh    | %                          | %   | kWh  | %  | %   | kWh   | %   | %   | kWh   | %   | %   | kWh   | %   | %   |
| Vitovalor | 1      | 1        |        | 7.0                        | ,,, |      |    | ,,, |       | ,,, | ,,, |       | ,,, | ,,, |       | ,,, |     |
| 3000      | 100    | 4600     | 2,5    | 47                         | 100 | 2,5  | 40 | 100 | 2,5   | 35  | 100 | 2,5   | 32  | 100 | 2,5   | 21  | 100 |
| 3500      | 150    | 5100     | 2,5    | 51                         | 100 | 2,5  | 44 | 100 | 2,5   | 39  | 100 | 2,5   | 36  | 100 | 2,5   | 24  | 100 |
| 4000      | 200    | 5400     | 2,5    | 55                         | 100 | 2,5  | 48 | 100 | 2,5   | 43  | 100 | 2,5   | 40  | 100 | 2,5   | 27  | 100 |
| 4500      | 250    | 5500     | 2,5    | 61                         | 100 | 2,5  | 54 | 100 | 2,5   | 47  | 100 | 2,5   | 44  | 100 | 2,5   | 30  | 100 |
| 5000      | 300    | 5600     | 2,5    | 67                         | 100 | 2,5  | 59 | 100 | 2,5   | 52  | 100 | 2,5   | 49  | 100 | 2,5   | 33  | 100 |
| 6000      | 350    | 5700     | 2,5    | 77                         | 96  | 2,5  | 68 | 97  | 2,5   | 61  | 97  | 2,5   | 56  | 97  | 2,5   | 38  | 98  |

Die Auslegungsbeispiele in der Tabelle wurden mit der Polysun-Software für Planer und Projektierer (Fa. Velasolaris, www.velasolaris.com) erstellt.

Hierzu wurde ein häufig für Vitovalor genutztes Anlagenschema verwendet:

Vitovalor:

- Anlagenschema 4800121: Heizwasser-Pufferspeicher 170 I, Speicher-Wassererwärmer, 46 I, siehe www.viessmann-schemes.com
- Standort: Frankfurt am Main mit einem Photovoltaik-Ertrag von ca. 950 kWh/kWp
- Gebäudeprofil: KfW70-Haus mit 180 m² Wohnfläche

Für die individuelle Planung und Simulation einer energetisch sinnvollen Auslegung stellt Viessmann eine Auswahl von Viessmann Anlagenschemen in Polysun zur Verfügung. Polysun bietet auch die Möglichkeit, eigene Anlagenschemen zu erstellen und eigene Lastprofile zu verwenden.

NBK Empfohlene nutzbare Batteriekapazität

- Eigenverbrauchsquote (in %) = Eigenstromverbrauch / Eigenstromerzeugung
- Autarkiequote (in %) = Eigenstromverbrauch / Gesamtstromverbrauch

### Individuelle Simulation der Energieflüsse mit Polysun

Für die Planung und Simulation einer energetisch sinnvollen Auslegung stellt Viessmann auf Anfrage Schemen für die Software Polysun (Fa. Velasolaris, www.velasolaris.com) zur Verfügung.

Polysun bietet die Möglichkeit, eigene Schemen zu erstellen und eigene Lastprofile zu verwenden.

# 4.7 Auslegung der Stromspeichergröße für den Netzparallelbetrieb mit Netzersatzbetrieb

Während für Anlagen im Netzparallelbetrieb die Auswahl der Leistung des Batterie-Wechselrichters eine untergeordnete Rolle spielt (im Einfamilienhaushalt genügt meist eine Leistung von 2 bis 3 kVA), ist für den Netzersatzbetrieb die Leistung des Batterie-Wechselrichters auf die benötigte Leistung der angeschlossenen Verbraucher genauer abzustimmen. Die max. Leistung des Photovoltaik-Wechselrichters darf bei Netzersatzbetrieb das 2-fache der Nennleistung des Batterie-Wechselrichters nicht überschreiten. Drehstomverbraucher dürfen im 1-phasigen Netzersatzbetrieb nicht betrieben werden. Für die Nutzung des Elektroherds ist der Querschnitt des Neutralleiters zu prüfen und auf die Einhaltung gültiger Installationsnormen zu achten.

### Abschätzung des Energiebedarfs bei Netzausfall

### 1. Ermittlung des Strombedarfs pro Tag

Strombedarf pro Tag = jährlicher Haushaltsstrombedarf / 365 Tage Beispiel: 6500 kWh/a / 365 Tage = **17,8 kWh** 

Bei einem geringeren Bedarf für den Notstromfall kann der Bedarf entsprechend reduziert werden.

### 2. Ermittlung der Erzeugung pro Tag

Erzeugung pro Tag = Anlagengröße der Photovoltaikanlage (in kWp) x 0,7 kWh/kWp (Photovoltaik-Erzeugung an einem Wintertag) + jährliche KWK-Erzeugung / 365 Tage

Beispiel: 3 kWp x 0,7 kWp + 2700 kWh / 365 Tage = 9,5 kWh

### 3. Ermittlung der nutzbaren Batteriekapazität

Strombedarf pro Tag – Erzeugung pro Tag Beispiel: 17,8 kWh – 9,5 kWh = **8,3 kWh** 

### Weitere Hinweise

### Auswahl der Batteriekapazität

Der Vitocharge besitzt im Netzersatzbetrieb eine hohe Überlastfähigkeit (siehe Kapitel "Technische Daten"). Damit diese Überlastfähigkeit genutzt werden kann, müssen die Batteriemodule einen entsprechenden Strom liefern können.

Empfehlung: Einsatz einer Gesamtbatteriekapazität von min. 120 Ah

### Anforderung an Photovoltaikanlagen

Bei 1-phasigen Photovoltaik-Wechselrichtern sollte die Wirkleistung frequenzabhängig regelbar sein. Es sind ausschließlich Photovoltaik-Wechselrichter geeignet, die die VDE-ARN-N 4105 oder die AS 4777 erfüllen.

3-phasige Photovoltaik-Wechselrichter können in 1-phasigen Ersatzstromnetzen nicht betrieben werden und sind daher für den Netzersatzbetrieb nicht geeignet.

# 4.8 Allgemeine Hinweise zu Blockschaltplänen und Anschlussplänen

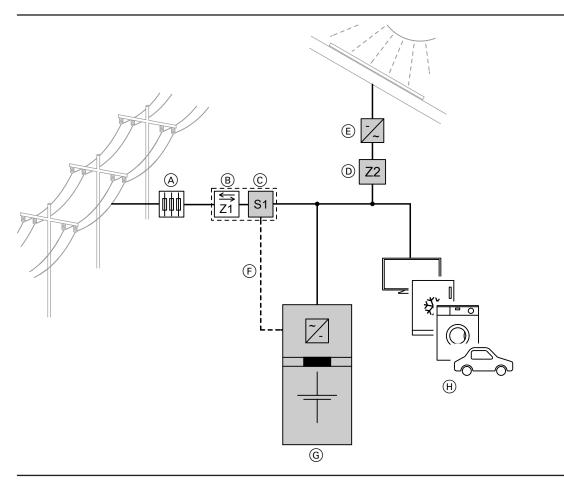
Blockschaltplan und Anschlussplan entsprechend der Anlagenkonfigurationen aus den folgenden Abbildungen wählen.

Die aufgeführten Blockschaltbilder sind konform mit dem VDE FNN Dokument "Anschluss und Betrieb von Speichern am Niederspannungsnetz" (Viessmann Herstellererklärung zur FNN-Konformität unter **www.viessmann.com**) und dienen zur Unterstützung bei der Anlagenplanung. Das gewünschte Zählerkonzept ist in jedem Fall mit dem Verteilnetzbetreiber abzustimmen. Die Einhaltung der technischen Regeln und Fördervoraussetzungen sind zu beachten.

Die Blockschaltbilder bzw. die Anordnung der Zähler sind so gestaltet, dass alle Stromerzeuger in Vitocharge einspeisen können. Eine andere Anordnung der Zähler ist technisch möglich, kann aber dazu führen, dass nicht alle Stromerzeuger in Vitocharge einspeisen können. Durch die jeweiligen Förderbedingungen kann das aber von Vorteil sein. Wir empfehlen, die Randbedingungen in der Planungsphase zu klären. Das gewünschte Zählerkonzept und der Anschluss der weiteren Komponenten sind in jedem Fall mit dem Verteilnetzbetreiber abzustimmen

Schutzeinrichtungen sind aus Gründen der Übersichtlichkeit in den Blockschaltplänen und Anschlussplänen nur teilweise dargestellt. Sicherheitsvorrichtungen gemäß gültigen Vorschriften einbauen.

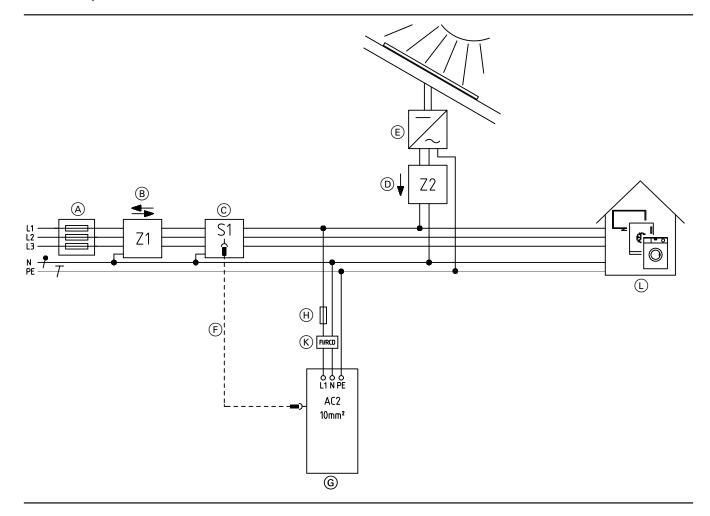
# Anlagenbeispiele mit Vitovolt


# 5.1 Netzparallelbetrieb

|                     | Netzparallelbetrieb | Netzparallelbetrieb mit<br>Netzersatzbetrieb |
|---------------------|---------------------|----------------------------------------------|
| Vitovolt 200/300    |                     |                                              |
| - Vitovolt 1-phasig | X                   |                                              |
| - Vitovolt 3-phasig | Х                   |                                              |

# Blockschaltplan

### Hinweis


Mit dem Verteilnetzbetreiber abstimmen, auf welcher Phase der Stromspeicher und die stromerzeugenden Komponenten angeschlossen werden sollen. Konform mit dem VDE-FNN-Hinweis siehe Kapitel "Allgemeine Hinweise zu Blockschaltplänen und Anschlussplänen".



- A Hauptanschlusskasten
- B Hauptanschlusszähler Z1 vom Energieversorgungsunternehmen
- © Stromsensor/Energiemanager
- Bei Photovoltaikanlagen ≥ 10 kW ab EEG 2012-II(4): Stromzähler Z2 erforderlich
- E Photovoltaik-Wechselrichter
- F Datenleitung
- © Vitocharge, Typ S230
- (H) Verbraucher

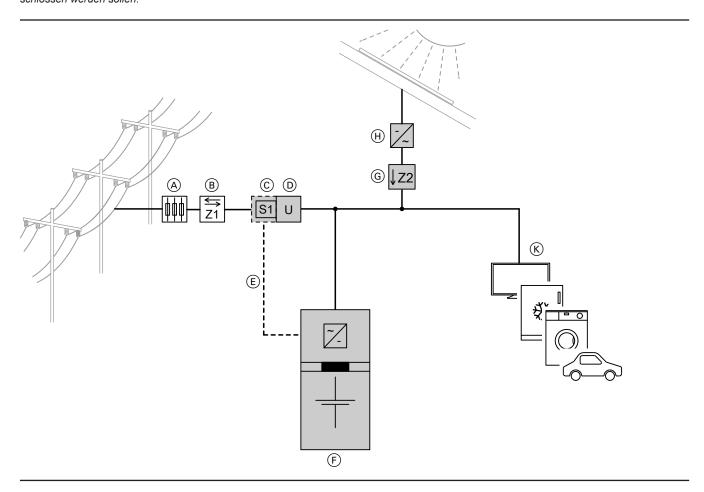
# Anlagenbeispiele mit Vitovolt (Fortsetzung)

### **Anschlussplan**



- (A) Hauptanschlusskasten
- B Hauptanschlusszähler Z1 vom Energieversorgungsunternehmen
- © Stromsensor/Energiemanager
- Bei Photovoltaikanlagen ≥ 10 kW ab EEG 2012-II(4): Stromzähler Z2 erforderlich
- (E) Photovoltaik-Wechselrichter Schutzeinrichtungen gemäß gültigen Vorschriften einbauen.
- F Datenleitung an "LAN1", RJ 45, min. Cat 5
- © Vitocharge, Typ S230
- H Leitungsschutzschalter: max. C 32 A
- Fehlerstrom-Schutzeinrichtung: 40 A/0,03 A Typ A
- (L) Hausverteilung mit Schutzeinrichtungen und Verbrauchern

# Anlagenbeispiele mit Vitovolt (Fortsetzung)

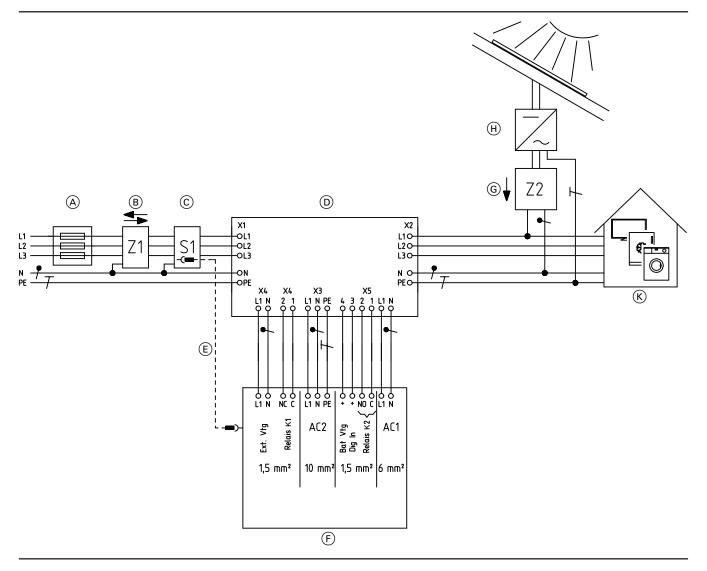

# 5.2 Netzparallelbetrieb mit Netzersatzbetrieb

|                     | Netzparallelbetrieb | Netzparallelbetrieb mit<br>Netzersatzbetrieb |
|---------------------|---------------------|----------------------------------------------|
| Vitovolt 200/300    |                     |                                              |
| - Vitovolt 1-phasig |                     | X                                            |
| - Vitovolt 3-phasig |                     | X                                            |

### Blockschaltplan

### Hinweis

Mit dem Verteilnetzbetreiber abstimmen, auf welcher Phase der Stromspeicher und die stromerzeugenden Komponenten angeschlossen werden sollen. Konform mit dem VDE-FNN-Hinweis siehe Kapitel "Allgemeine Hinweise zu Blockschaltplänen und Anschlussplänen".




- (A) Hauptanschlusskasten
- B Hauptanschlusszähler Z1 vom Energieversorgungsunternehmen
- © Stromsensor/Energiemanager (in Hauptverteilung oder Umschalteinrichtung)
- D Umschalteinrichtung

- E Datenleitung
- F Vitocharge, Typ S230
- ⑤ Bei Photovoltaikanlagen ≥ 10 kW ab EEG 2012-II(4): Stromzähler Z2 erforderlich
- H) Photovoltaik-Wechselrichter
- (K) Verbraucher

# Anlagenbeispiele mit Vitovolt (Fortsetzung)

### **Anschlussplan**



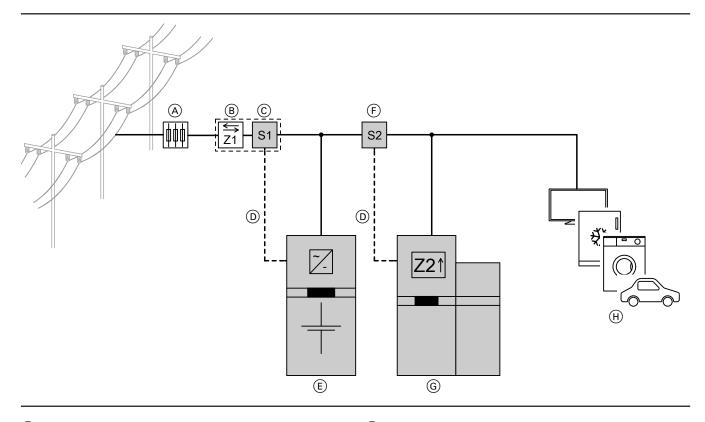
- (A) Hauptanschlusskasten
- B Hauptanschlusszähler Z1 vom Energieversorgungsunternehmen
- © Stromsensor/Energiemanager
- D Umschalteinrichtung
- © Datenleitung an "LAN1", RJ 45, min. Cat 5

Die Verbindungsleitung zwischen "Bat Vtg" und "Dig In" des Vitocharge und X5.3 und X5.4 der Umschalteinrichtung geschirmt ausführen. Den Schirm an einen freien Anschluss "PE" der Umschalteinrichtung anschließen.

- F Vitocharge, Typ S230
- G Bei Photovoltaikanlagen ≥ 10 kW ab EEG 2012-II(4): Stromzähler Z2 erforderlich
- Photovoltaik-Wechselrichter
   Schutzeinrichtungen gemäß gültigen Vorschriften einbauen.
- K Hausverteilung mit Schutzeinrichtungen und Verbrauchern

Bei Netzausfall max. auslösefähige Leitungsschutzschalter: B6A

# Anlagenbeispiele mit Vitovalor

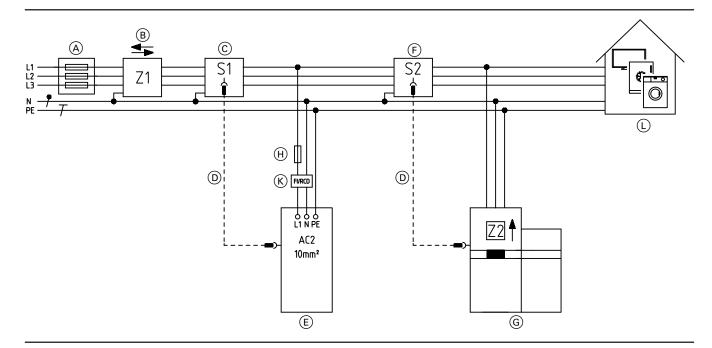

# 6.1 Netzparallelbetrieb

|               | Netzparallelbetrieb | Netzparallelbetrieb mit<br>Netzersatzbetrieb |
|---------------|---------------------|----------------------------------------------|
| Vitovalor PT2 | X                   |                                              |

# Blockschaltplan

Mit dem Verteilnetzbetreiber abstimmen, auf welcher Phase der Stromspeicher und die stromerzeugenden Komponenten angeschlossen werden sollen.

Konform mit dem VDE-FNN-Hinweis siehe Kapitel "Allgemeine Hinweise zu Blockschaltplänen und Anschlussplänen".




- A HauptanschlusskastenB Hauptanschlusszähler Hauptanschlusszähler Z1 vom Energieversorgungsunterneh-
- Stromsensor/Energiemanager
- Datenleitung

- © Vitocharge, Typ S230
- Externer Stromzähler Vitovalor (Messwandler) F
- G Vitovalor PT2 mit integriertem Stromzähler Z2
- Verbraucher

# Anlagenbeispiele mit Vitovalor (Fortsetzung)

### **Anschlussplan**

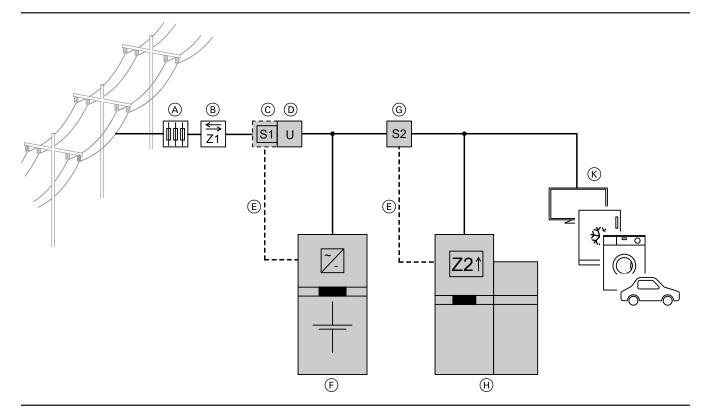


- (A) Hauptanschlusskasten
- B Hauptanschlusszähler Z1 vom Energieversorgungsunterneh-
- Stromsensor/Energiemanager
- Datenleitung an "LAN1", RJ 45, min. Cat 5
- E Vitocharge, Typ S230

- (F) Externer Stromzähler Vitovalor (Messwandler)
- Vitovalor PT2 mit integriertem Stromzähler Z2 Schutzeinrichtungen gemäß gültigen Vorschriften einbauen.

  H Leitungsschutzschalter: max. C 32 A
- Fehlerstrom-Schutzeinrichtung: 40 A/0,03 A Typ A
- L Hausverteilung mit Schutzeinrichtungen und Verbrauchern

# Anlagenbeispiele mit Vitovalor (Fortsetzung)

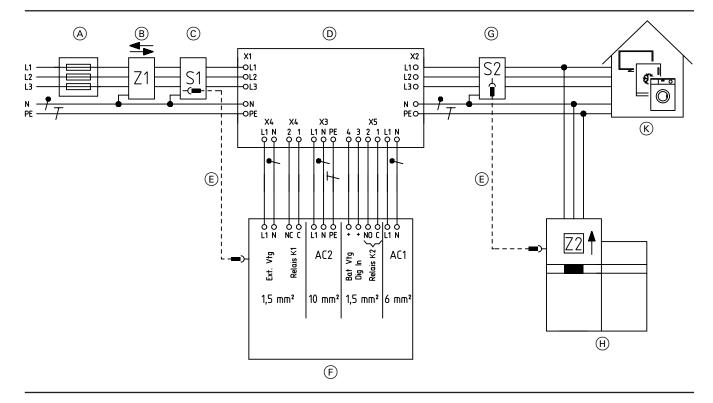

# 6.2 Netzparallelbetrieb mit Netzersatzbetrieb

|               | Netzparallelbetrieb | Netzparallelbetrieb mit<br>Netzersatzbetrieb |
|---------------|---------------------|----------------------------------------------|
| Vitovalor PT2 |                     | X                                            |

### Blockschaltplan

### Hinweis

Mit dem Verteilnetzbetreiber abstimmen, auf welcher Phase der Stromspeicher und die stromerzeugenden Komponenten angeschlossen werden sollen. Konform mit dem VDE-FNN-Hinweis siehe Kapitel "Allgemeine Hinweise zu Blockschaltplänen und Anschlussplänen".




- A Hauptanschlusskasten
- B Hauptanschlusszähler Z1 vom Energieversorgungsunternehmen
- © Stromsensor/Energiemanager (in Hauptverteilung oder Umschalteinrichtung)
- D Umschalteinrichtung

- E Datenleitung
- F Vitocharge, Typ S230
- © Externer Stromzähler Vitovalor (Messwandler)
- (H) Vitovalor PT2
- K Verbraucher

# Anlagenbeispiele mit Vitovalor (Fortsetzung)

### **Anschlussplan**



- (A) Hauptanschlusskasten
- Hauptanschlusszähler Z1 vom Energieversorgungsunternehmen
- © Stromsensor/Energiemanager
- D Umschalteinrichtung

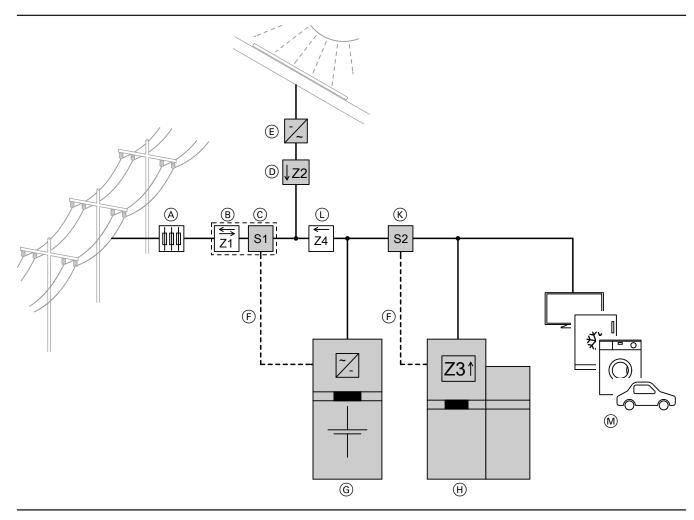
Die Verbindungsleitung zwischen "Bat Vtg" und "Dig In" des Vitocharge und X5.3 und X5.4 der Umschalteinrichtung geschirmt ausführen. Den Schirm an einen freien Anschluss "PE" der Umschalteinrichtung anschließen.

- (E) Datenleitung an "LAN1", RJ 45, min. Cat 5
- F Vitocharge, Typ S230
- © Externer Stromzähler Vitovalor (Messwandler)
- Vitovalor PT2 mit integriertem Stromzähler Z2
   Schutzeinrichtungen gemäß gültigen Vorschriften einbauen.
- (K) Hausverteilung mit Schutzeinrichtungen und Verbrauchern

Bei Netzausfall max. auslösefähige Leitungsschutzschalter: B6A

# Anlagenbeispiele mit Vitovalor und Vitovolt

# 7.1 Netzparallelbetrieb

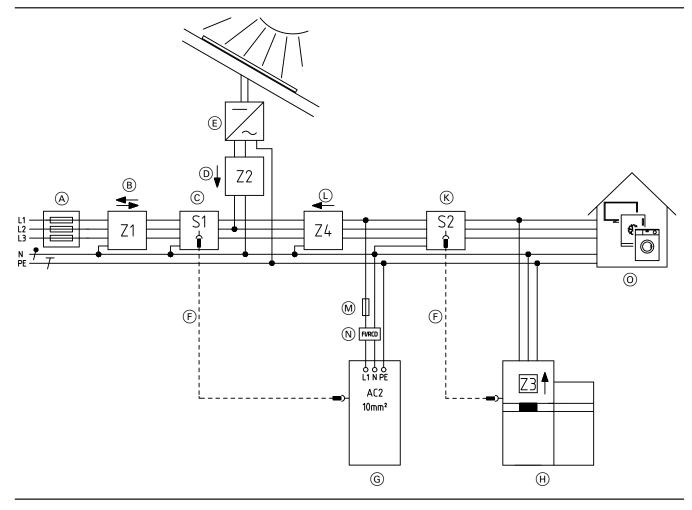

|                                     | Netzparallelbetrieb | Netzparallelbetrieb mit<br>Netzersatzbetrieb |
|-------------------------------------|---------------------|----------------------------------------------|
| Vitovalor PT2 und Vitovolt 200/300  |                     |                                              |
| - Vitovolt 1-phasig                 | X                   |                                              |
| <ul><li>Vitovolt 3-phasig</li></ul> | X                   |                                              |

### Blockschaltplan

### Hinweis

- Mit dem Verteilnetzbetreiber abstimmen, an welcher Phase der Stromspeicher und die stromerzeugenden Komponenten angeschlossen werden sollen.
- Zur effektiveren Eigenstromnutzung bei mehreren 1-phasigen Erzeugungsanlagen den Stromspeicher an der Phase anschließen, an der die leistungsschwächste Erzeugungsanlage angeschlossen ist.

Konform mit dem VDE-FNN-Hinweis siehe Kapitel "Allgemeine Hinweise zu Blockschaltplänen und Anschlussplänen".




- (A) Hauptanschlusskasten
- B Hauptanschlusszähler Z1 vom Energieversorgungsunterneh-
- Stromsensor/Energiemanager
- Bei Photovoltaikanlagen ≥ 10 kW ab EEG 2012-II(4): Stromzähler Z2 erforderlich
- Photovoltaik-Wechselrichter

- F Datenleitung
- Vitocharge, Typ S230 G
- $\bigoplus$ Vitovalor PT2 mit integriertem Stromzähler Z3
- K Externer Stromzähler Vitovalor (Messwandler)
- Stromzähler Z4: Einspeisevergütung Vitovalor (L)
- Verbraucher

# Anlagenbeispiele mit Vitovalor und Vitovolt (Fortsetzung)

### **Anschlussplan**

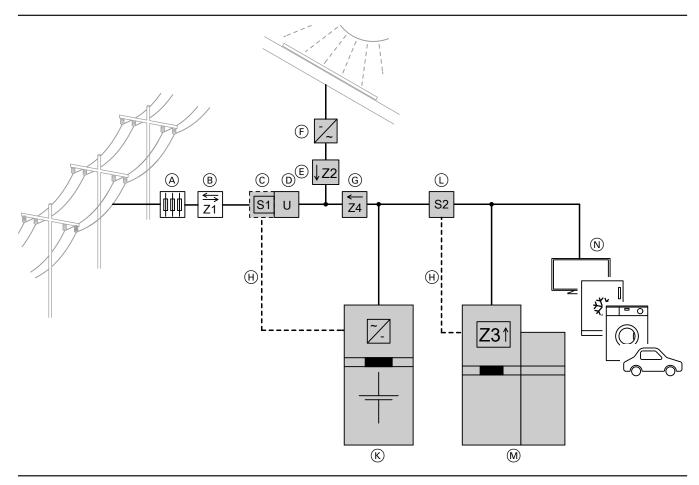


- (A) Hauptanschlusskasten
- B Hauptanschlusszähler Z1 vom Energieversorgungsunternehmen
- © Stromsensor/Energiemanager
- Bei Photovoltaikanlagen ≥ 10 kW ab EEG 2012-II(4): Stromzähler Z2 erforderlich
- (E) Photovoltaik-Wechselrichter Schutzeinrichtungen gemäß gültigen Vorschriften einbauen.
- F Datenleitung an "LAN1", RJ 45, min. Cat 5

- © Vitocharge, Typ S230
- Vitovalor PT2 mit integriertem Stromzähler Z3
   Schutzeinrichtungen gemäß gültigen Vorschriften einbauen.
- K Externer Stromzähler Vitovalor (Messwandler)
- (L) Stromzähler Z4: Einspeisevergütung Vitovalor
- M Leitungsschutzschalter: max. C 32 A
- N Fehlerstrom-Schutzeinrichtung: 40 A/0,03 A Typ A
- O Hausverteilung mit Schutzeinrichtungen und Verbrauchern

# Anlagenbeispiele mit Vitovalor und Vitovolt (Fortsetzung)

# 7.2 Netzparallelbetrieb mit Netzersatzbetrieb


|                                    | Netzparallelbetrieb | Netzparallelbetrieb mit<br>Netzersatzbetrieb |
|------------------------------------|---------------------|----------------------------------------------|
| Vitovalor PT2 und Vitovolt 200/300 |                     |                                              |
| - Vitovolt 1-phasig                |                     | X                                            |
| - Vitovolt 3-phasig                |                     | X                                            |

### Blockschaltplan

### Hinweis

- Mit dem Verteilnetzbetreiber abstimmen, an welcher Phase der Stromspeicher und die stromerzeugenden Komponenten angeschlossen werden sollen.
- Zur effektiveren Eigenstromnutzung bei mehreren 1-phasigen Erzeugungsanlagen den Stromspeicher an der Phase anschließen, an der die leistungsschwächste Erzeugungsanlage angeschlossen ist.

Konform mit dem VDE-FNN-Hinweis siehe Kapitel "Allgemeine Hinweise zu Blockschaltplänen und Anschlussplänen".



- Hauptanschlusskasten
- Hauptanschlusszähler Z1 vom Energieversorgungsunterneh-
- Stromsensor/Energiemanager (in Hauptverteilung oder Umschalteinrichtung)
- Umschalteinrichtung
- Bei Photovoltaikanlagen ≥ 10 kW ab EEG 2012-II(4): Stromzähler Z2 erforderlich
- F Photovoltaik-Wechselrichter
- Stromzähler Z4: Einspeisevergütung Vitovalor **G**
- $\oplus$ Datenleitung
- Vitocharge, Typ S230 (K)
- Externer Stromzähler Vitovalor (Messwandler)
- Vitovalor PT2 mit integrierten Stromzähler Z3  $\bigcirc$
- Verbraucher

# Anlagenbeispiele mit Vitovalor und Vitovolt (Fortsetzung)

### **Anschlussplan**

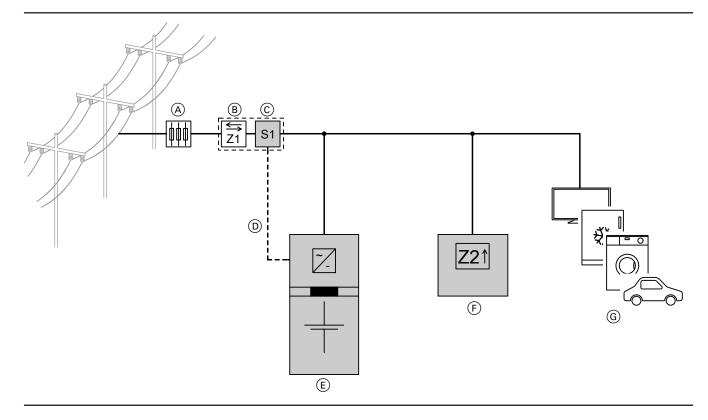


- A Hauptanschlusskasten
- (B) Hauptanschlusszähler Z1 vom Energieversorgungsunternehmen
- © Stromsensor/Energiemanager
- D Umschalteinrichtung
- (E) Bei Photovoltaikanlagen ≥ 10 kW ab EEG 2012-II(4): Stromzähler Z2 erforderlich
- Photovoltaik-Wechselrichter
   Schutzeinrichtungen gemäß gültigen Vorschriften einbauen.
- Bei Anschluss des Stromzählers Z4 Brücke zwischen X6 und X7 entfernen.
- Die Verbindungsleitung zwischen "Bat Vtg" und "Dig In" des Vitocharge und X5.3 und X5.4 der Umschalteinrichtung geschirmt ausführen. Den Schirm an einen freien Anschluss "PE" der Umschalteinrichtung anschließen.

- G Stromzähler Z4: Einspeisevergütung Vitovalor
- Externer Stromzähler Vitovalor (Messwandler)
- (K) Datenleitung an "LAN1", RJ 45, min. Cat 5
- (L) Vitocharge, Typ S230
- Witovalor PT2 mit integrierten Stromzähler Z3 Schutzeinrichtungen gemäß gültigen Vorschriften einbauen.
- N Hausverteilung mit Schutzeinrichtungen und Verbrauchern

Bei Netzausfall max. auslösefähige Leitungsschutzschalter: B6A

# Anlagenbeispiele mit Vitobloc

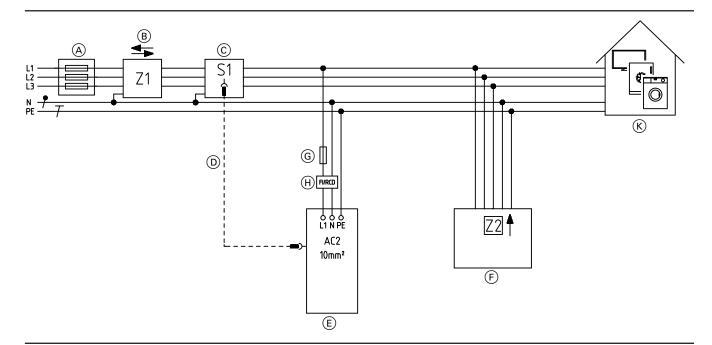

# 8.1 Netzparallelbetrieb

|              | Netzparallelbetrieb | Netzparallelbetrieb mit<br>Netzersatzbetrieb |
|--------------|---------------------|----------------------------------------------|
| Vitobloc 200 | X                   |                                              |

# Blockschaltplan

### Hinweis

Mit dem Verteilnetzbetreiber abstimmen, auf welcher Phase der Stromspeicher und die stromerzeugenden Komponenten angeschlossen werden sollen. Konform mit dem VDE-FNN-Hinweis siehe Kapitel "Allgemeine Hinweise zu Blockschaltplänen und Anschlussplänen".




- (A) Hauptanschlusskasten
- B Hauptanschlusszähler Z1 vom Energieversorgungsunternehmen
- © Stromsensor/Energiemanager

- D Datenleitung
- © Vitocharge, Typ S230
- F Vitobloc 200 mit integriertem Stromzähler Z2
- G Verbraucher

# Anlagenbeispiele mit Vitobloc (Fortsetzung)

### **Anschlussplan**



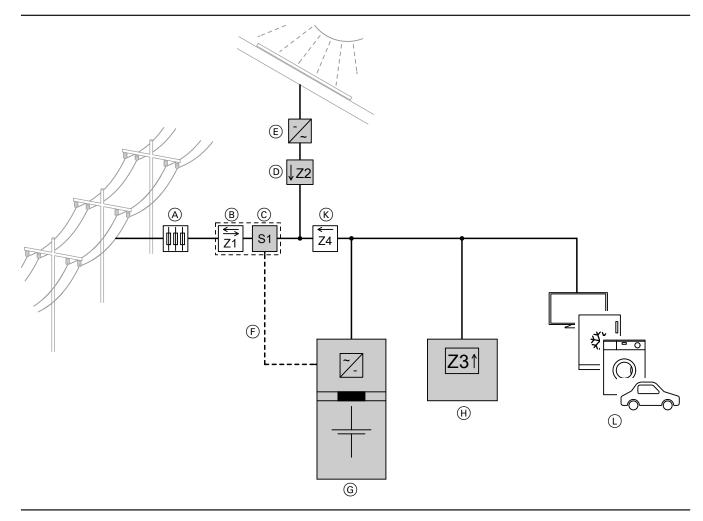
- (A) Hauptanschlusskasten
- B Hauptanschlusszähler Z1 vom Energieversorgungsunterneh-
- Stromsensor/Energiemanager
- © Stromsensor/Energiemanager
  Datenleitung an "LAN1", RJ 45, min. Cat 5

- (E) Vitocharge, Typ S230
- Vitobloc 200 mit integriertem Stromzähler Z2 Schutzeinrichtungen gemäß gültigen Vorschriften einbauen.

  G Leitungsschutzschalter: max. C 32 A
- H Fehlerstrom-Schutzeinrichtung: 40 A/0,03 A Typ A
- K Hausverteilung mit Schutzeinrichtungen und Verbrauchern

# Anlagenbeispiele mit Vitobloc und Vitovolt

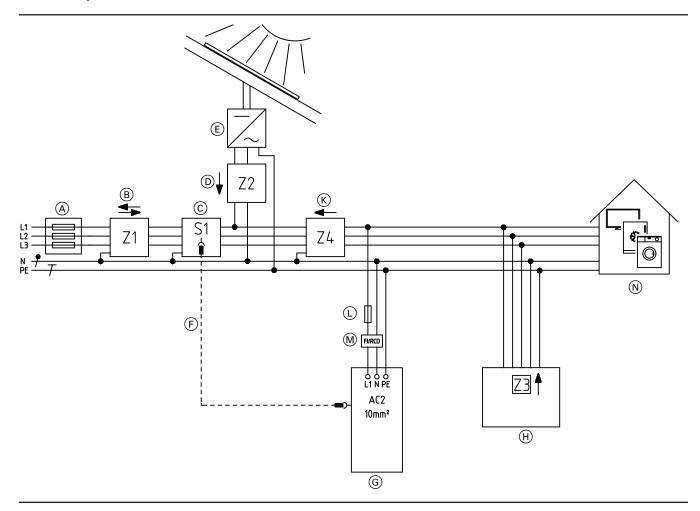
### 9.1 Netzparallelbetrieb


|                                   | Netzparallelbetrieb | Netzparallelbetrieb mit<br>Netzersatzbetrieb |
|-----------------------------------|---------------------|----------------------------------------------|
| Vitobloc 200 und Vitovolt 200/300 |                     |                                              |
| - Vitovolt 1-phasig               | X                   |                                              |
| - Vitovolt 3-phasig               | Х                   |                                              |

#### Blockschaltplan

#### Hinweis

- Mit dem Verteilnetzbetreiber abstimmen, an welcher Phase der Stromspeicher und die stromerzeugenden Komponenten angeschlossen werden sollen.
- Zur effektiveren Eigenstromnutzung bei mehreren 1-phasigen Erzeugungsanlagen den Stromspeicher an der Phase anschließen, an der die leistungsschwächste Erzeugungsanlage angeschlossen ist.


Konform mit dem VDE-FNN-Hinweis siehe Kapitel "Allgemeine Hinweise zu Blockschaltplänen und Anschlussplänen".



- A Hauptanschlusskasten
- Hauptanschlusszähler Z1 vom Energieversorgungsunternehmen
- © Stromsensor/Energiemanager
- Bei Photovoltaikanlagen ≥ 10 kW ab EEG 2012-II(4): Stromzähler Z2 erforderlich
- E Photovoltaik-Wechselrichter
- F Datenleitung
- © Vitocharge, Typ S230
- (H) Vitobloc 200 mit integriertem Stromzähler Z3
- K) Stromzähler Z4: Einspeisevergütung Vitobloc
- Verbraucher

# Anlagenbeispiele mit Vitobloc und Vitovolt (Fortsetzung)

#### **Anschlussplan**

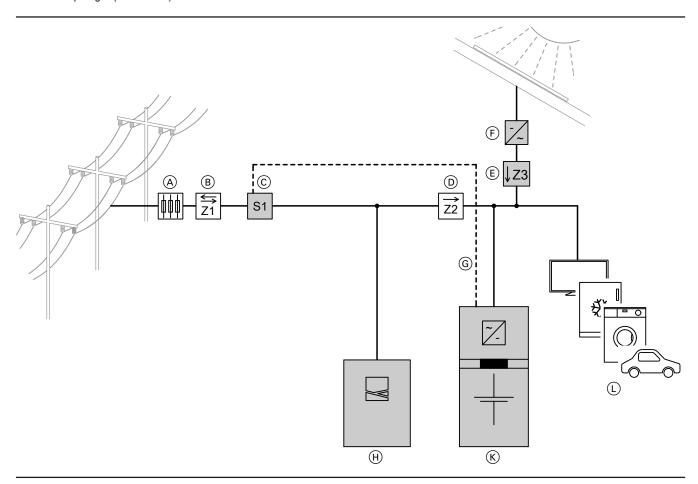


- (A) Hauptanschlusskasten
- (B) Hauptanschlusszähler Z1 vom Energieversorgungsunternehmen
- © Stromsensor/Energiemanager
- Bei Photovoltaikanlagen ≥ 10 kW ab EEG 2012-II(4): Stromzähler Z2 erforderlich
- (E) Photovoltaik-Wechselrichter Schutzeinrichtungen gemäß gültigen Vorschriften einbauen.
- F Datenleitung an "LAN1", RJ 45, min. Cat 5
- © Vitocharge, Typ S230
- (H) Vitobloc 200 mit integriertem Stromzähler Z3 Schutzeinrichtungen gemäß gültigen Vorschriften einbauen.
  - Stromzähler Z4: Einspeisevergütung Vitobloc
- Leitungsschutzschalter: max. C 32 A
- M Fehlerstrom-Schutzeinrichtung: 40 A/0,03 A Typ A
- N Hausverteilung mit Schutzeinrichtungen und Verbrauchern

**VITOCHARGE** 

# Anlagenbeispiele mit Vitocal und Vitovolt

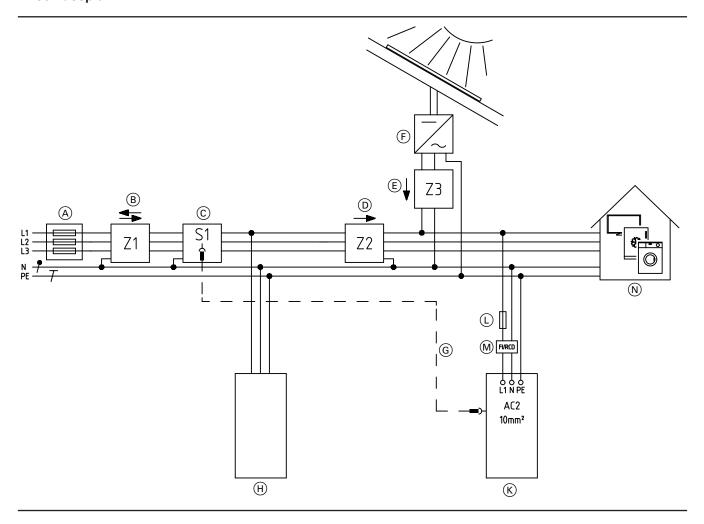
# 10.1 Netzparallelbetrieb


|                                                                          | Netzparallelbetrieb | Netzparallelbetrieb mit<br>Netzersatzbetrieb |
|--------------------------------------------------------------------------|---------------------|----------------------------------------------|
| Vitocal mit 1-phasigem Verdichter 230 V und Vitovolt 200/300             |                     | 1101201041204100                             |
| - Vitovolt 1-phasig                                                      | X                   |                                              |
| - Vitovolt 3-phasig                                                      | X                   |                                              |
| Vitocal 1xx/2xx/3xx mit 3-phasigem Verdichter 400 V und Vitovolt 200/300 |                     |                                              |
| - Vitovolt 1-phasig                                                      | X                   |                                              |
| - Vitovolt 3-phasig                                                      | X                   |                                              |

#### Blockschaltplan

#### Hinweis

- Mit dem Verteilnetzbetreiber abstimmen, auf welcher Phase der Stromspeicher und die stromerzeugenden Komponenten angeschlossen werden sollen.
- Tarifumschaltung oder Unterbrechung: Energiezufuhr über Rundsteuer-Empfänger (Sondertarif)


Konform mit dem VDE-FNN-Hinweis siehe Kapitel "Allgemeine Hinweise zu Blockschaltplänen und Anschlussplänen".



- (A) Hauptanschlusskasten
- Hauptanschlusszähler Z1 vom Energieversorgungsunternehmen
- © Stromsensor/Energiemanager
- D Stromzähler Z2: Hochtarifverbrauch
- E Bei Photovoltaikanlagen ≥ 10 kW ab EEG 2012-II(4): Stromzähler Z3 erforderlich
- F Photovoltaik-Wechselrichter
- © Datenleitung
- (H) Vitocal
- K Vitocharge, Typ S230
- (L) Weitere Verbraucher

# Anlagenbeispiele mit Vitocal und Vitovolt (Fortsetzung)

#### **Anschlussplan**



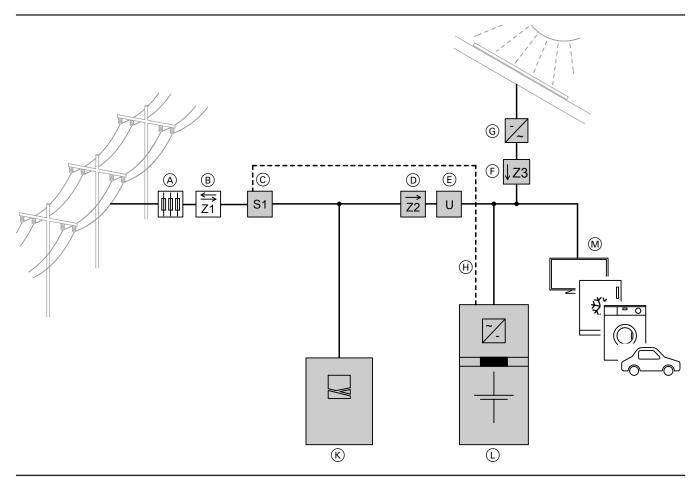
- (A) Hauptanschlusskasten
- B Hauptanschlusszähler Z1 vom Energieversorgungsunternehmen
- © Stromsensor/Energiemanager
- © Stromzähler Z2: Hochtarifverbrauch
- E Bei Photovoltaikanlagen ≥ 10 kW ab EEG 2012-II(4): Stromzähler Z3 erforderlich
- (F) Photovoltaik-Wechselrichter
   Schutzeinrichtungen gemäß gültigen Vorschriften einbauen.
- © Datenleitung an "LAN1", RJ 45, min. Cat 5
- (H) Vitocal

Schutzeinrichtungen gemäß gültigen Vorschriften einbauen.

- K Vitocharge, Typ S230
- Leitungsschutzschalter: max. C 32 A
- M Fehlerstrom-Schutzeinrichtung: 40 A/0,03 A Typ A
- N Hausverteilung mit Schutzeinrichtungen und Verbrauchern

# Anlagenbeispiele mit Vitocal und Vitovolt (Fortsetzung)

### 10.2 Netzparallelbetrieb mit Netzersatzbetrieb

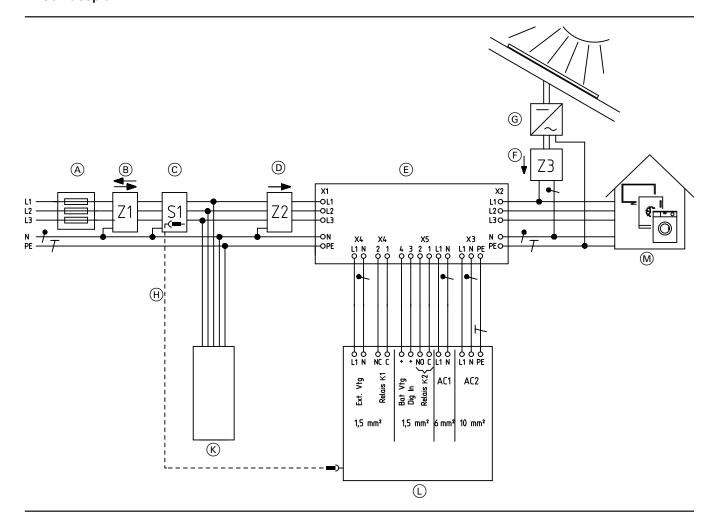

|                                                                          | Netzparallelbetrieb | Netzparallelbetrieb mit<br>Netzersatzbetrieb |
|--------------------------------------------------------------------------|---------------------|----------------------------------------------|
| Vitocal mit 1-phasigem Verdichter 230 V und Vitovolt 200/300             |                     |                                              |
| - Vitovolt 1-phasig                                                      |                     | X                                            |
| - Vitovolt 3-phasig                                                      |                     | _                                            |
| Vitocal 1xx/2xx/3xx mit 3-phasigem Verdichter 400 V und Vitovolt 200/300 |                     |                                              |
| - Vitovolt 1-phasig                                                      |                     | _                                            |
| - Vitovolt 3-phasig                                                      |                     | _                                            |

#### Blockschaltplan

#### **Hinweis**

- Mit dem Verteilnetzbetreiber abstimmen, auf welcher Phase der Stromspeicher und die stromerzeugenden Komponenten angeschlossen werden sollen.
- Tarifumschaltung oder Unterbrechung: Energiezufuhr über Rundsteuer-Empfänger (Sondertarif)

Konform mit dem VDE-FNN-Hinweis siehe Kapitel "Allgemeine Hinweise zu Blockschaltplänen und Anschlussplänen".




- (A) Hauptanschlusskasten
- Hauptanschlusszähler Z1 vom Energieversorgungsunternehmen
- Stromsensor/Energiemanager (in Hauptverteilung oder Umschalteinrichtung)
- D Stromzähler Z2: Hochtarifverbrauch
- © Umschalteinrichtung

- (F) Bei Photovoltaikanlagen ≥ 10 kW ab EEG 2012-II(4): Stromzähler Z3 erforderlich
- G Photovoltaik-Wechselrichter
- (H) Datenleitung
- K Vitocal
- Vitocharge, Typ S230
- M Weitere Verbraucher

# Anlagenbeispiele mit Vitocal und Vitovolt (Fortsetzung)

#### **Anschlussplan**



- (A) Hauptanschlusskasten
- B Hauptanschlusszähler Z1 vom Energieversorgungsunternehmen
- © Stromsensor/Energiemanager
- © Stromzähler Z2: Hochtarifverbrauch
- E Umschalteinrichtung
- F Bei Photovoltaikanlagen ≥ 10 kW ab EEG 2012-II(4): Stromzähler Z3 erforderlich

Die Verbindungsleitung zwischen "Bat Vtg" und "Dig In" des Vitocharge und X5.3 und X5.4 der Umschalteinrichtung geschirmt ausführen. Den Schirm an einen freien Anschluss "PE" der Umschalteinrichtung anschließen.

- ⑤ Photovoltaik-Wechselrichter Schutzeinrichtungen gemäß gültigen Vorschriften einbauen.
- (H) Datenleitung an "LAN1", RJ 45, min. Cat 5
- K Vitocal
- Schutzeinrichtungen gemäß gültigen Vorschriften einbauen.
- L Vitocharge, Typ S230
- M Hausverteilung mit Schutzeinrichtungen und Verbrauchern

Bei Netzausfall max. auslösefähige Leitungsschutzschalter: B6A

#### **Anhang**

# 11.1 Förderungen, Anträge und Konformitätserklärungen

Alle Informationen zu Förderungen siehe **www.viessmann.com** unter "Vitocharge" > "Fördermittelabfrage".

Weitere Hinweise und Formulare für die Inbetriebnahme (z. B. Anträge und Konformitätsnachweise) siehe **www.viessmann.de** unter "Marktpartner" > "Vitocharge".

5776310

# Anhang (Fortsetzung)

# 11.2 Vorschriften/Richtlinien

Wir, die Viessmann Werke GmbH & Co. KG zeigen an, dass das Stromspeichersystem Vitocharge nach den derzeitig geltenden Richtlinien/Verordnungen, Normen und technischen Regeln geprüft und zugelassen ist.

# Stichwortverzeichnis

| <b>3</b> 3-phasige Photovoltaikanlagen                                                                                                                                                                                                                                                                                                                                                                                   | 23                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| A                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |
| Abmessungen                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                 |
| Abstände                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    |
| Abstandmaße                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |
| Anlagenbeispiel                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    |
| Anagenbeispiele                                                                                                                                                                                                                                                                                                                                                                                                          | 1, 28, 32                                                          |
| Anschlussplan  – Allgemeine Hinweise                                                                                                                                                                                                                                                                                                                                                                                     | 22                                                                 |
| - Vitobloc                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |
| - Vitobloc und Vitovolt                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |
| - Vitocal und Vitovolt                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |
| - Vitovalor                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                                  |
| - Vitovalor und Vitovolt                                                                                                                                                                                                                                                                                                                                                                                                 | 33, 35                                                             |
| - Vitovolt                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |
| Aufstellbedingungen                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    |
| Aufstellraum                                                                                                                                                                                                                                                                                                                                                                                                             | 15                                                                 |
| Auslegung                                                                                                                                                                                                                                                                                                                                                                                                                | 47                                                                 |
| - Netzparallelbetrieb                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    |
| Netzparallelbetrieb mit Netzersatzbetrieb  Auslieferungszustand                                                                                                                                                                                                                                                                                                                                                          |                                                                    |
| Auslieferungszustanu                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |
| В                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |
| Batterie                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                 |
| Batteriekapazität auswählen                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |
| Batteriemodul                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |
| - Kennlinien                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |
| - Nutzbare Energie                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    |
| – Typ 4.8A                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |
| Bestimmungsgemäße Verwendung                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                 |
| Blockschaltplan                                                                                                                                                                                                                                                                                                                                                                                                          | 00                                                                 |
| Allgemeine Hinweise  - Vitobloc                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    |
| - Vitobloc und Vitovolt                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                          | 38                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    |
| - Vitocal und Vitovolt                                                                                                                                                                                                                                                                                                                                                                                                   | 40, 42                                                             |
| <ul><li>Vitocal und Vitovolt</li><li>Vitovalor</li></ul>                                                                                                                                                                                                                                                                                                                                                                 | 40, 42<br>28, 30                                                   |
| - Vitocal und Vitovolt                                                                                                                                                                                                                                                                                                                                                                                                   | 40, 42<br>28, 30<br>32, 34                                         |
| <ul><li>Vitocal und Vitovolt</li><li>Vitovalor</li><li>Vitovalor und Vitovolt</li></ul>                                                                                                                                                                                                                                                                                                                                  | 40, 42<br>28, 30<br>32, 34                                         |
| Vitocal und Vitovolt      Vitovalor      Vitovalor und Vitovolt      Vitovolt   E                                                                                                                                                                                                                                                                                                                                        | 40, 42<br>28, 30<br>32, 34<br>24, 26                               |
| Vitocal und Vitovolt      Vitovalor      Vitovalor und Vitovolt      Vitovolt   E  Elektrischer Anschluss                                                                                                                                                                                                                                                                                                                | 40, 42<br>28, 30<br>32, 34<br>24, 26                               |
| <ul> <li>Vitocal und Vitovolt</li></ul>                                                                                                                                                                                                                                                                                                                                                                                  | 40, 42<br>28, 30<br>32, 34<br>24, 26                               |
| Vitocal und Vitovolt      Vitovalor      Vitovalor und Vitovolt      Vitovolt   E  Elektrischer Anschluss                                                                                                                                                                                                                                                                                                                | 40, 42<br>28, 30<br>32, 34<br>24, 26                               |
| <ul> <li>Vitocal und Vitovolt</li></ul>                                                                                                                                                                                                                                                                                                                                                                                  | 40, 42<br>28, 30<br>32, 34<br>24, 26                               |
| <ul> <li>Vitocal und Vitovolt.</li> <li>Vitovalor.</li> <li>Vitovalor und Vitovolt.</li> <li>Vitovolt.</li> </ul> E Elektrischer Anschluss. Energiemanager. Energiemonitoring. F                                                                                                                                                                                                                                         | 40, 42<br>28, 30<br>32, 34<br>24, 26<br>16<br>14                   |
| <ul> <li>Vitocal und Vitovolt.</li> <li>Vitovalor.</li> <li>Vitovalor und Vitovolt.</li> <li>Vitovolt.</li> </ul> E Elektrischer Anschluss. Energiemanager. Energiemonitoring. F Förderanträge.                                                                                                                                                                                                                          | 40, 42<br>28, 30<br>32, 34<br>24, 26<br>16<br>14                   |
| <ul> <li>Vitocal und Vitovolt.</li> <li>Vitovalor.</li> <li>Vitovalor und Vitovolt.</li> <li>Vitovolt.</li> </ul> E Elektrischer Anschluss. Energiemanager. Energiemonitoring. F                                                                                                                                                                                                                                         | 40, 42<br>28, 30<br>32, 34<br>24, 26<br>16<br>14                   |
| <ul> <li>Vitocal und Vitovolt.</li> <li>Vitovalor.</li> <li>Vitovolt.</li> <li>Vitovolt.</li> </ul> E Elektrischer Anschluss. Energiemanager. Energiemonitoring. F Förderanträge. Förderung. G                                                                                                                                                                                                                           | 40, 42<br>28, 30<br>32, 34<br>24, 26<br>16<br>14<br>14             |
| <ul> <li>Vitocal und Vitovolt.</li> <li>Vitovalor.</li> <li>Vitovalor und Vitovolt.</li> <li>Vitovolt.</li> </ul> E Elektrischer Anschluss. Energiemanager. Energiemonitoring. F Förderanträge. Förderung.                                                                                                                                                                                                               | 40, 42<br>28, 30<br>32, 34<br>24, 26<br>16<br>14<br>14             |
| <ul> <li>Vitocal und Vitovolt.</li> <li>Vitovalor.</li> <li>Vitovolt.</li> <li>Vitovolt.</li> </ul> E Elektrischer Anschluss. Energiemanager. Energiemonitoring. F Förderanträge. Förderung. G                                                                                                                                                                                                                           | 40, 42<br>28, 30<br>32, 34<br>24, 26<br>16<br>14<br>14             |
| <ul> <li>Vitocal und Vitovolt.</li> <li>Vitovalor.</li> <li>Vitovolt.</li> <li>Vitovolt.</li> <li>E</li> <li>Elektrischer Anschluss.</li> <li>Energiemanager.</li> <li>Energiemonitoring.</li> <li>F</li> <li>Förderanträge.</li> <li>Förderung.</li> <li>G</li> <li>Gewicht.</li> <li>I</li> </ul>                                                                                                                      | 40, 42<br>28, 30<br>32, 34<br>24, 26<br>16<br>14<br>14<br>43<br>43 |
| <ul> <li>Vitocal und Vitovolt.</li> <li>Vitovalor.</li> <li>Vitovolt.</li> <li>Vitovolt.</li> </ul> E Elektrischer Anschluss. Energiemanager. Energiemonitoring. F Förderanträge. Förderung. G                                                                                                                                                                                                                           | 40, 42<br>28, 30<br>32, 34<br>24, 26<br>16<br>14<br>14<br>43<br>43 |
| <ul> <li>Vitocal und Vitovolt.</li> <li>Vitovalor.</li> <li>Vitovolt.</li> <li>Vitovolt.</li> </ul> E Elektrischer Anschluss. Energiemanager. Energiemonitoring. F Förderanträge. Förderung. G Gewicht. I Installationszubehör.                                                                                                                                                                                          | 40, 42<br>28, 30<br>32, 34<br>24, 26<br>16<br>14<br>14<br>43<br>43 |
| <ul> <li>Vitocal und Vitovolt.</li> <li>Vitovalor.</li> <li>Vitovolt.</li> <li>Vitovolt.</li> <li>E Elektrischer Anschluss.</li> <li>Energiemanager.</li> <li>Energiemonitoring.</li> <li>F Förderanträge.</li> <li>Förderung.</li> <li>G Gewicht.</li> <li>I Installationszubehör.</li> </ul>                                                                                                                           | 40, 42<br>28, 30<br>32, 34<br>24, 26<br>16<br>14<br>14<br>43<br>43 |
| <ul> <li>Vitocal und Vitovolt.</li> <li>Vitovalor.</li> <li>Vitovolt.</li> <li>E</li> <li>Elektrischer Anschluss.</li> <li>Energiemanager.</li> <li>Energiemonitoring.</li> <li>F</li> <li>Förderanträge.</li> <li>Förderung.</li> <li>G</li> <li>Gewicht.</li> <li>I</li> <li>Installationszubehör.</li> <li>K</li> <li>Kennlinien</li> </ul>                                                                           | 40, 42<br>28, 30<br>32, 34<br>24, 26<br>16<br>14<br>14<br>43<br>43 |
| <ul> <li>Vitocal und Vitovolt.</li> <li>Vitovalor.</li> <li>Vitovolt.</li> <li>Vitovolt.</li> <li>E Elektrischer Anschluss.</li> <li>Energiemanager.</li> <li>Energiemonitoring.</li> <li>F Förderanträge.</li> <li>Förderung.</li> <li>G Gewicht.</li> <li>I Installationszubehör.</li> </ul>                                                                                                                           | 40, 42<br>28, 30<br>32, 34<br>24, 26<br>16<br>14<br>14<br>43<br>43 |
| <ul> <li>Vitocal und Vitovolt.</li> <li>Vitovalor.</li> <li>Vitovolt.</li> <li>E</li> <li>Elektrischer Anschluss.</li> <li>Energiemanager.</li> <li>Energiemonitoring.</li> <li>F</li> <li>Förderanträge.</li> <li>Förderung.</li> <li>G</li> <li>Gewicht.</li> <li>I</li> <li>Installationszubehör.</li> <li>K</li> <li>Kennlinien</li> </ul>                                                                           | 40, 42<br>28, 30<br>32, 34<br>24, 26<br>16<br>14<br>14<br>43<br>43 |
| <ul> <li>Vitocal und Vitovolt.</li> <li>Vitovalor.</li> <li>Vitovolt.</li> <li>E</li> <li>Elektrischer Anschluss.</li> <li>Energiemanager.</li> <li>Energiemonitoring.</li> <li>F</li> <li>Förderanträge.</li> <li>Förderung.</li> <li>G</li> <li>Gewicht.</li> <li>I</li> <li>Installationszubehör.</li> <li>K</li> <li>Kennlinien</li> <li>Batteriemodul.</li> </ul>                                                   | 40, 4228, 3032, 3424, 261614439, 1014                              |
| - Vitocal und Vitovolt                                                                                                                                                                                                                                                                                                                                                                                                   | 40, 4228, 3032, 3424, 261614439, 1014                              |
| <ul> <li>Vitocal und Vitovolt</li></ul>                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |
| <ul> <li>Vitocal und Vitovolt.</li> <li>Vitovalor.</li> <li>Vitovalor und Vitovolt.</li> <li>Vitovolt.</li> <li>E Elektrischer Anschluss.</li> <li>Energiemanager.</li> <li>Energiemonitoring.</li> <li>F Förderanträge.</li> <li>Förderung.</li> <li>G Gewicht.</li> <li>I Installationszubehör.</li> <li>K Kennlinien  — Batteriemodul.</li> <li>L Leistungsabgabe.</li> <li>M Mindestabstände.</li> </ul>             |                                                                    |
| <ul> <li>Vitocal und Vitovolt</li></ul>                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |
| <ul> <li>Vitocal und Vitovolt.</li> <li>Vitovalor.</li> <li>Vitovalor und Vitovolt.</li> <li>Vitovolt.</li> <li>E Elektrischer Anschluss.</li> <li>Energiemanager.</li> <li>Energiemonitoring.</li> <li>F Förderanträge.</li> <li>Förderung.</li> <li>G Gewicht.</li> <li>I Installationszubehör.</li> <li>K Kennlinien  – Batteriemodul.</li> <li>L Leistungsabgabe.</li> <li>M Mindestabstände. Montageort.</li> </ul> |                                                                    |
| - Vitocal und Vitovolt Vitovalor                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |
| <ul> <li>Vitocal und Vitovolt.</li> <li>Vitovalor.</li> <li>Vitovalor und Vitovolt.</li> <li>Vitovolt.</li> <li>E Elektrischer Anschluss.</li> <li>Energiemanager.</li> <li>Energiemonitoring.</li> <li>F Förderanträge.</li> <li>Förderung.</li> <li>G Gewicht.</li> <li>I Installationszubehör.</li> <li>K Kennlinien  – Batteriemodul.</li> <li>L Leistungsabgabe.</li> <li>M Mindestabstände. Montageort.</li> </ul> |                                                                    |

| P Platzbedarf                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R         Regelung                                                                                                                                                                                                                                                                                                                       |
| S         Sicherheitskonzept                                                                                                                                                                                                                                                                                                             |
| T Technische Daten - Batteriemodul                                                                                                                                                                                                                                                                                                       |
| U Übersicht der Geräte                                                                                                                                                                                                                                                                                                                   |
| V         Vitobloc       36, 37, 38         Vitobloc und Vitovolt       38, 39         Vitocal       40         Vitocal und Vitovolt       40, 41, 42, 43         Vitovalor       28, 29, 30, 31, 32         Vitovalor und Vitovolt       32, 33, 34, 35         Vitovolt       24, 25, 26, 27, 32, 38, 40         Vorschriften       44 |

46 VIESMANN VITOCHARGE

5776310

Technische Änderungen vorbehalten!

Viessmann Ges.m.b.H. A-4641 Steinhaus bei Wels Telefon: 07242 62381-110 Telefax: 07242 62381-440 www.viessmann.at Viessmann Werke GmbH & Co. KG D-35107 Allendorf Telefon: 06452 70-0 Telefax: 06452 70-2780

www.viessmann.de